1,784 research outputs found

    Temperature-controlled interlayer exchange coupling in strong/weak ferromagnetic multilayers: a thermo-magnetic Curie-switch

    Full text link
    We investigate a novel type of interlayer exchange coupling based on driving a strong/weak/strong ferromagnetic tri-layer through the Curie point of the weakly ferromagnetic spacer, with the exchange coupling between the strongly ferromagnetic outer layers that can be switched, on and off, or varied continuously in magnitude by controlling the temperature of the material. We use Ni-Cu alloy of varied composition as the spacer material and model the effects of proximity-induced magnetism and the interlayer exchange coupling through the spacer from first principles, taking into account not only thermal spin-disorder but also the dependence of the atomic moment of Ni on the nearest-neighbor concentration of the non-magnetic Cu. We propose and demonstrate a gradient-composition spacer, with a lower Ni-concentration at the interfaces, for greatly improved effective-exchange uniformity and significantly improved thermo-magnetic switching in the structure. The reported magnetic multilayer materials can form the base for a variety of novel magnetic devices, such as sensors, oscillators, and memory elements based on thermo-magnetic Curie-switching in the device.Comment: 15 pages, 5 figure

    The biocompatibility of titanium in a buffer solution: compared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel

    Get PDF
    This study aims at evaluating the biocompatibility of titanium surfaces modified according two different ways: (i) deposition of a bio-inert, thin film of rutile TiO2 by chemical vapour deposition (MOCVD), and (ii) biochemical treatment with collagen gel, in order to obtain a bio-interactive coating. Behind the comparison is the idea that either the bio-inert or the bio-active coating has specific advantages when applied to implant treatment, such as the low price of the collagen treatment for instance. The stability in buffer solution was evaluated by open circuit potential (OCP) for medium time and cyclic voltametry. The OCP stabilized after 5104 min for all the specimens except the collagen treated sample which presented a stable OCP from the first minutes. MOCVD treated samples stabilized to more electropositive values. Numeric results were statistically analysed to obtain the regression equations for long time predictable evolution. The corrosion parameters determined from cyclic curves revealed that the MOCVD treatment is an efficient way to improve corrosion resistance. Human dermal fibroblasts were selected for cell culture tests, taking into account that these cells are present in all bio-interfaces, being the main cellular type of connective tissue. The cells grew on either type of surface without phenotype modification. From the reduction of yellow, water-soluble 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT cytotoxicity test), MOCVD treated samples offer better viability than mechanically polished Ti and collagen treated samples as well. Cell spreading, as evaluated from microscope images processed by the program Sigma Scan, showed also enhancement upon surface modification. Depending on the experimental conditions, MOCVD deposited TiO2 exhibits different nanostructures that may influence biological behaviour. The results demonstrate the capacity of integration in simulated physiologic liquids for an implant pretreated by either method

    Indications of Spin-Charge Separation at Short Distance and Stripe Formation in the Extended t-J Model on Ladders and Planes

    Full text link
    The recently discussed tendency of holes to generate nontrivial spin environments in the extended two-dimensional t-J model (G. Martins, R. Eder, and E. Dagotto, Phys. Rev. B{\bf 60}, R3716 (1999)) is here investigated using computational techniques applied to ladders with several number of legs. This tendency is studied also with the help of analytic spin-polaron approaches directly in two dimensions. Our main result is that the presence of robust antiferromagnetic correlations between spins located at both sides of a hole either along the x or y axis, observed before numerically on square clusters, is also found using ladders, as well as applying techniques based on a string-basis expansion. This so-called "across-the-hole" nontrivial structure exists even in the two-leg spin-gapped ladder system, and leads to an effective reduction in dimensionality and spin-charge separation at short-distances, with a concomitant drastic reduction in the quasiparticle (QP) weight Z. In general, it appears that holes tend to induce one-dimensional-like spin arrangements to improve their mobility. Using ladders it is also shown that the very small J/t\sim0.1 regime of the standard t-J model may be more realistic than anticipated in previous investigations, since such regime shares several properties with those found in the extended model at realistic couplings. Another goal of the present article is to provide additional information on the recently discussed tendencies to stripe formation and spin incommensurability reported for the extended t-J model.Comment: 14 pages, 21 figures, LateX, submited to Phys. Rev.

    A particle swarm optimization-based algorithm for finding gapped motifs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying approximately repeated patterns, or motifs, in DNA sequences from a set of co-regulated genes is an important step towards deciphering the complex gene regulatory networks and understanding gene functions.</p> <p>Results</p> <p>In this work, we develop a novel motif finding algorithm (PSO+) using a population-based stochastic optimization technique called Particle Swarm Optimization (PSO), which has been shown to be effective in optimizing difficult multidimensional problems in continuous domains. We propose a modification of the standard PSO algorithm to handle discrete values, such as characters in DNA sequences. The algorithm provides several features. First, we use both consensus and position-specific weight matrix representations in our algorithm, taking advantage of the efficiency of the former and the accuracy of the latter. Furthermore, many real motifs contain gaps, but the existing methods usually ignore them or assume a user know their exact locations and lengths, which is usually impractical for real applications. In comparison, our method models gaps explicitly, and provides an easy solution to find gapped motifs without any detailed knowledge of gaps. Our method allows the presence of input sequences containing zero or multiple binding sites.</p> <p>Conclusion</p> <p>Experimental results on synthetic challenge problems as well as real biological sequences show that our method is both more efficient and more accurate than several existing algorithms, especially when gaps are present in the motifs.</p

    Stability of metallic stripes in the extended one-band Hubbard model

    Full text link
    Based on an unrestricted Gutzwiller approximation (GA) we investigate the stripe orientation and periodicity in an extended one-band Hubbard model. A negative ratio between next-nearest and nearest neighbor hopping t'/t, as appropriate for cuprates, favors partially filled (metallic) stripes for both vertical and diagonal configurations. At around optimal doping diagonal stripes, site centered (SC) and bond centered (BC) vertical stripes become degenerate suggesting strong lateral and orientational fluctuations. We find that within the GA the resulting phase diagram is in agreement with experiment whereas it is not in the Hartree-Fock approximation due to a strong overestimation of the stripe filling. Results are in agreement with previous calculations within the three-band Hubbard model but with the role of SC and BC stripes interchanged.Comment: 10 pages, 8 figure

    Designing a HER2/neu promoter to drive α1,3galactosyltransferase expression for targeted anti-αGal antibody-mediated tumor cell killing

    Get PDF
    INTRODUCTION: Our goal was to specifically render tumor cells susceptible to natural cytolytic anti-αGal antibodies by using a murine α1,3galactosyltransferase (mαGalT) transgene driven by a designed form of HER2/neu promoter (pNeu), the transcription of which is frequently observed to be above basal in breast tumors. Indeed, the αGalT activity that promotes Galα1,3Galβ1,4GlcNAc-R (αGal) epitope expression has been mutationally disrupted during the course of evolution, starting from Old World primates, and this has led to the counter-production of large amounts of cytotoxic anti-αGal antibodies in recent primates, including man. METHOD: Expression of the endogenous c-erbB-2 gene was investigated in various cell lines by northern blotting. A mαGalT cDNA was constructed into pcDNA3 vector downstream of the original CMV promoter (pCMV/mαGalT) and various forms of pNeu were prepared by PCR amplification and inserted in the pCMV/mαGalT construct upstream of the mαGalT cDNA, in the place of the CMV promoter. These constructs were transferred into HEK-293 control and breast tumor cell lines. Stably transfected cells were analyzed by northern blotting for their expression of αGalT and c-erbB-2, and by flow cytometry for their binding with fluorescein isothiocyanate-conjugated Griffonia simplicifolia/isolectin B4. RESULTS: We show that expression of the mαGalT was up- or down-modulated according to the level of endogenous pNeu activity and the particular form of constructed pNeu. Among several constructs, two particular forms of the promoter, pNeu250 containing the CCAAT box and the PEA3 motif adjacent to the TATAA box, and pNeu664, which has three additional PEA3 motifs upstream of the CCAAT box, were found to promote differential αGalT expression. CONCLUSION: Our results strengthen current concepts about the crucial role played by the proximal PEA3 motif of pNeu, and may represent a novel therapeutic approach for the development of targeted transgene expression

    Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet

    Full text link
    We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic insulator, and coupled to it via a weak antiferromagnetic spin exchange interaction. We argue that this model may qualitatively capture the physics of a single charge stripe in the cuprates on length- and time scales shorter than those set by its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that describes the electronic spin sector of the stripe as that of a sine-Gordon model. We determine its phases via a perturbative renormalization group analysis. For realistic values of the model parameters we obtain a phase characterized by enhanced spin density and composite charge density wave correlations, coexisting with subleading triplet and composite singlet pairing correlations. This result is shown to be independent of the spatial orientation of the stripe on the square lattice. Slow transverse fluctuations of the stripes tend to suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correlation, breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure

    First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    Get PDF
    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]

    Open Problems on Central Simple Algebras

    Full text link
    We provide a survey of past research and a list of open problems regarding central simple algebras and the Brauer group over a field, intended both for experts and for beginners.Comment: v2 has some small revisions to the text. Some items are re-numbered, compared to v
    corecore