49 research outputs found

    A retrospective review of oral low-dose sirolimus (rapamycin) for the treatment of active uveitis

    Get PDF
    Purpose: The purpose of this study is to elicit the role of oral low-dose sirolimus as a corticosteriod-sparing agent for active uveitis. Methods: A retrospective, interventional case series was performed by reviewing the clinical records of all patients treated with oral, low-dose sirolimus (1-4 mg daily) for severe uveitis. Data reviewed included symptomatic improvement, Snellen best-corrected visual acuity, corticosteroid requirement, sirolimus levels, intraocular inflammation, spectral-domain optical coherence tomography, and fluorescein angiogram. Primary outcome measures were determined by the ability to decrease the intraocular inflammation, corticosteroid requirement, and frequency of flares. Results: Eight patients with varied diagnoses were treated with oral low-dose sirolimus for severe, chronic uveitis between 2008 and 2010. In four of the eight patients, there was an improvement of all primary outcome measures. While sirolimus monotherapy was successful in only one patient, a sirolimus/methotrexate combination was successful in three patients. Although there was a good initial response in three patients, treatment was a failure after serious side effects forced the cessation of sirolimus therapy. One patient was lost to follow-up. Conclusion: Sirolimus may have a limited role in severe uveitis as an adjunct corticosteroid-sparing agent in combination with more standard immunosuppressive agents. Oral low-dose sirolimus appeared to be better tolerated than higher doses, but there were a significant number of adverse events, requiring therapy to be stopped. © 2010 The Author(s)

    HMG-CoAR expression in male breast cancer: relationship with hormone receptors, Hippo transducers and survival outcomes

    Get PDF
    Male breast cancer (MBC) is a rare hormone-driven disease often associated with obesity. HMG-CoAR is the central enzyme of the mevalonate pathway, a molecular route deputed to produce cholesterol and steroid-based hormones. HMG-CoAR regulates the oncogenic Hippo transducers TAZ/YAP whose expression was previously associated with shorter survival in MBC. 225 MBC samples were immunostained for HMG-CoAR and 124 were considered eligible for exploring its relationship with hormone receptors (ER, PgR, AR), Hippo transducers and survival outcomes. HMG-CoAR was positively associated with the expression of hormone receptors (ER, PgR, AR) and Hippo transducers. Overall survival was longer in patients with HMG-CoAR-positive tumors compared with their negative counterparts (p = 0.031). Five- and 10-year survival outcomes were better in patients whose tumors expressed HMG-CoAR (p = 0.044 and p = 0.043). Uni- and multivariate analyses for 10-year survival suggested that HMG-CoAR expression is a protective factor (HR 0.50, 95% CI: 0.25–0.99, p = 0.048 and HR 0.53, 95% CI: 0.26–1.07, p = 0.078). Results were confirmed in a sensitivity analysis by excluding uncommon histotypes (multivariate Cox: HR 0.45, 95% CI: 0.21–0.97, p = 0.043). A positive relationship emerged between HMG-CoAR, hormone receptors and TAZ/YAP, suggesting a connection between the mevalonate pathway, the hormonal milieu and Hippo in MBC. Moreover, HMG-CoAR expression may be a favorable prognostic indicator

    Induction of Cytoprotective Pathways Is Central to the Extension of Lifespan Conferred by Multiple Longevity Pathways

    Get PDF
    Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60), the ER UPR (hsp-4), ROS response (sod-3, gst-4), and xenobiotic detoxification (gst-4). We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.National Institute on Aging (AG16636

    A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information

    Full text link
    corecore