25 research outputs found

    Tuning coherent-phonon heat transport in LaCoO3/SrTiO3 superlattices

    Get PDF
    Accessing the regime of coherent phonon propagation in nanostructures opens enormous possibilities to control the thermal conductivity in energy harvesting devices, phononic circuits, etc. In this paper we show that coherent phonons contribute substantially to the thermal conductivity of LaCoO3/SrTiO3 oxide superlattices, up to room temperature. We show that their contribution can be tuned through small variations of the superlattice periodicity, without changing the total superlattice thickness. Using this strategy, we tuned the thermal conductivity by 20% at room temperature. We also discuss the role of interface mixing and epitaxial relaxation as an extrinsic, material dependent key parameter for understanding the thermal conductivity of oxide superlattices. © 2021 The Authors. Published by American Chemical Society

    A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models

    Get PDF
    This paper addresses the problem of Monte Carlo approximation of posterior probability distributions. In particular, we have considered a recently proposed technique known as population Monte Carlo (PMC), which is based on an iterative importance sampling approach. An important drawback of this methodology is the degeneracy of the importance weights when the dimension of either the observations or the variables of interest is high. To alleviate this difficulty, we propose a novel method that performs a nonlinear transformation on the importance weights. This operation reduces the weight variation, hence it avoids their degeneracy and increases the efficiency of the importance sampling scheme, specially when drawing from a proposal functions which are poorly adapted to the true posterior. For the sake of illustration, we have applied the proposed algorithm to the estimation of the parameters of a Gaussian mixture model. This is a very simple problem that enables us to clearly show and discuss the main features of the proposed technique. As a practical application, we have also considered the popular (and challenging) problem of estimating the rate parameters of stochastic kinetic models (SKM). SKMs are highly multivariate systems that model molecular interactions in biological and chemical problems. We introduce a particularization of the proposed algorithm to SKMs and present numerical results.Comment: 35 pages, 8 figure

    Tuning Coherent-Phonon Heat Transport in LaCoO3/SrTiO3Superlattices

    No full text
    | openaire: EC/H2020/734187/EU//SPICOLOST Funding Information: This work has received financial support from Ministerio de EconomĂ­a y Competitividad (Spain) under project Nos. MAT2016-80762-R and PID2019-104150RB-I00, Xunta de Galicia (Centro singular de investigaciĂłn de Galicia accreditation 2019-2022, ED431G 2019/03), the European Union (European Regional Development Fund-ERDF), and the European Commission through the Horizon H2020 funding by H2020-MSCA-RISE-2016- Project No. 734187-SPICOLOST. E.L. is a Serra HĂșnter Fellow (Generalitat de Catalunya). D.B. acknowledges financial support from MINECO (Spain) through an FPI fellowship (BES-2017-079688). V.P. and A.O.F. were supported by the MINECO of Spain through the project PGC2018-101334-B-C21. A.O.F. thanks MECD for the financial support received through the FPU grant FPU16/02572. This work was carried out in part through the use of the INL User Facilities. Publisher Copyright: © 2021 The Authors. Published by American Chemical Society.Accessing the regime of coherent phonon propagation in nanostructures opens enormous possibilities to control the thermal conductivity in energy harvesting devices, phononic circuits, etc. In this paper we show that coherent phonons contribute substantially to the thermal conductivity of LaCoO3/SrTiO3 oxide superlattices, up to room temperature. We show that their contribution can be tuned through small variations of the superlattice periodicity, without changing the total superlattice thickness. Using this strategy, we tuned the thermal conductivity by 20% at room temperature. We also discuss the role of interface mixing and epitaxial relaxation as an extrinsic, material dependent key parameter for understanding the thermal conductivity of oxide superlattices.Peer reviewe

    Double strain state in a single GaN/AlN nanowire: Probing the core-shell effect by ultraviolet resonant Raman scattering

    No full text
    International audienceWe report the demonstration of an ultra-sensitive Raman probing of single GaN/AlN nanowires (NWs). The high sensitivity of the Raman scattering by longitudinal optical phonon is achieved by using ultraviolet resonant excitation near the energy band-gap of GaN. Structural variations within one single nanowire are evidenced very accurately by strong LO phonons shifts in the UV Raman spectra recorded on different regions of the NW. They are interpreted as a fine probing of the double strain state experienced by GaN, due to the formation of an AlN shell in the bottom part of the NW. The core-shell structure has been confirmed in a statistical way by measuring the average strain in the NWs ensemble thanks to the Raman scattering excited in the visible range. Data have been comprehensively accounted for by considering an axial strain in GaN NW part covered by AlN shell, in the elastic regime, while the top GaN is relaxed

    Acceptance and knowledge of evolutionary theory among third-year university students in Spain

    No full text
    The theory of evolution is one of the greatest scientific achievements in the intellectual history of humankind, yet it is still contentious within certain social groups. Despite being as robust and evidence-based as any other notable scientific theory, some people show a strong reluctance to accept it. In this study, we used the Measure of Acceptance of the Theory of Evolution (MATE) and Knowledge of Evolution Exam (KEE) questionnaires with university students from four academic degree programs (Chemistry, English, History, and Biology) of ten universities from Spain to measure, respectively, acceptance and knowledge of evolutionary theory among third-year undergraduate students (n = 978; n = 981). Results show that acceptance of evolution is relatively high (87.2%), whereas knowledge of the theory is moderate (5.4 out of 10) although there are differences across degrees (Biology>Chemistry>History>English), and even among various universities (ranging from 4.71 to 5.81). Statistical analysis reveals that knowledge of evolutionary theory among Biology students is partially explained by the relative weight of evolutionary themes within the curriculum, suggesting that an increase in the number of hours dedicated to this topic could have a direct influence on students’ knowledge of it. We also found that religion may have a significant—although relatively small—negative influence on evolutionary theory acceptance. The moderate knowledge of evolution in our undergraduate students, together with the potential problem of acceptance in certain groups, suggests the need for a revision of the evolutionary concepts in the teaching curricula of our students since primary school
    corecore