257 research outputs found

    A petabyte size electronic library using the N-Gram memory engine

    Get PDF
    A model library containing petabytes of data is proposed by Triada, Ltd., Ann Arbor, Michigan. The library uses the newly patented N-Gram Memory Engine (Neurex), for storage, compression, and retrieval. Neurex splits data into two parts: a hierarchical network of associative memories that store 'information' from data and a permutation operator that preserves sequence. Neurex is expected to offer four advantages in mass storage systems. Neurex representations are dense, fully reversible, hence less expensive to store. Neurex becomes exponentially more stable with increasing data flow; thus its contents and the inverting algorithm may be mass produced for low cost distribution. Only a small permutation operator would be recalled from the library to recover data. Neurex may be enhanced to recall patterns using a partial pattern. Neurex nodes are measures of their pattern. Researchers might use nodes in statistical models to avoid costly sorting and counting procedures. Neurex subsumes a theory of learning and memory that the author believes extends information theory. Its first axiom is a symmetry principle: learning creates memory and memory evidences learning. The theory treats an information store that evolves from a null state to stationarity. A Neurex extracts information data without a priori knowledge; i.e., unlike neural networks, neither feedback nor training is required. The model consists of an energetically conservative field of uniformly distributed events with variable spatial and temporal scale, and an observer walking randomly through this field. A bank of band limited transducers (an 'eye'), each transducer in a bank being tuned to a sub-band, outputs signals upon registering events. Output signals are 'observed' by another transducer bank (a mid-brain), except the band limit of the second bank is narrower than the band limit of the first bank. The banks are arrayed as n 'levels' or 'time domains, td.' The banks are the hierarchical network (a cortex) and transducers are (associative) memories. A model Neurex was built and studied. Data were 50 MB to 10 GB samples of text, data base, and images: black/white, grey scale, and high resolution in several spectral bands. Memories at td, S(m(sub td)), were plotted against outputs of memories at td-1. S(m(sub td)) was Boltzman distributed, and memory frequencies exhibited self-organized criticality (SOC); i.e., 'l/f(sup beta)' after long exposures to data. Whereas output signals from level n may be encoded with B(sub output) = O(-log(2)f(sup beta)) bits, and input data encoded with B(sub input) = O((S(td)/S(td-1))(sup n)), B(sup output)/B(sub input) is much less than 1 always, the Neurex determines a canonical code for data and it is a lossless data compressor. Further tests are underway to confirm these results with more data types and larger samples

    Extending scientific computing system with structural quantum programming capabilities

    Full text link
    We present a basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave, providing a library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for high-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible thanks to the ability to operate on density matrices

    Unsharp Quantum Reality

    Get PDF
    The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way

    Thermal properties of high power laser bars investigated by spatially resolved thermoreflectance spectroscopy

    Get PDF
    In this work we present results of the analysis of thermal properties of high-power laser bars obtained by spatially resolved thermoreflectance (TR) spectroscopy. Thermoreflectance is a modulation technique relying on periodic facet temperature modulation induced by pulsed current supply of the laser. The periodic temperature change of the laser induces variation of the refractive index and consequently modulates probe beam reflectivity. The technique has a spatial resolution of about 1 m and can be used for temperature mapping over 300 m 300 m area. Information obtained in these experiments provide an insight into thermal processes occurring at devices' facets and consequently lead to increased reliability and substantially longer lifetimes of such structures

    Sharp and fuzzy observables on effect algebras

    Full text link
    Observables on effect algebras and their fuzzy versions obtained by means of confidence measures (Markov kernels) are studied. It is shown that, on effect algebras with the (E)-property, given an observable and a confidence measure, there exists a fuzzy version of the observable. Ordering of observables according to their fuzzy properties is introduced, and some minimality conditions with respect to this ordering are found. Applications of some results of classical theory of experiments are considered.Comment: 23 page

    Angular and Temperature Tuning of Emission from Vertical-External-Cavity Surface-Emitting Lasers (VECSELs)

    Get PDF
    In this paper we demonstrate how the tuning of the VECSEL heterostructure can be precisely determined. Since the VECSEL active region is embodied in a microcavity, the photoluminescence signal collected from the chip surface is modified by the resonance of this cavity. The angle resolved photoluminescence measurements combined with the temperature tuning of the structure allowed us to precisely determine VECSEL emission features. The investigated structure consists of GaAs cavity with six InGaAs quantum wells and is designed for lasing at 980 nm. Introduction Vertical-external-cavity surface-emitting lasers (VECSELs

    Complete positivity of nonlinear evolution: A case study

    Get PDF
    Simple Hartree-type equations lead to dynamics of a subsystem that is not completely positive in the sense accepted in mathematical literature. In the linear case this would imply that negative probabilities have to appear for some system that contains the subsystem in question. In the nonlinear case this does not happen because the mathematical definition is physically unfitting as shown on a concrete example.Comment: extended version, 3 appendices added (on mixed states, projection postulate, nonlocality), to be published in Phys. Rev.

    Nonlinear Quantum Mechanics at the Planck Scale

    Full text link
    I argue that the linearity of quantum mechanics is an emergent feature at the Planck scale, along with the manifold structure of space-time. In this regime the usual causality violation objections to nonlinearity do not apply, and nonlinear effects can be of comparable magnitude to the linear ones and still be highly suppressed at low energies. This can offer alternative approaches to quantum gravity and to the evolution of the early universe.Comment: Talk given at the International Quantum Structures 2004 meeting, 16 pages LaTe

    Calculation of atomic spontaneous emission rate in 1D finite photonic crystal with defects

    Full text link
    We derive the expression for spontaneous emission rate in finite one-dimensional photonic crystal with arbitrary defects using the effective resonator model to describe electromagnetic field distributions in the structure. We obtain explicit formulas for contributions of different types of modes, i.e. radiation, substrate and guided modes. Formal calculations are illustrated with a few numerical examples, which demonstrate that the application of effective resonator model simplifies interpretation of results.Comment: Cent. Eur. J. Phys, in pres
    • 

    corecore