13 research outputs found

    Membrane adsorber for endotoxin removal

    Get PDF
    ABSTRACT The surface of flat-sheet nylon membranes was modified using bisoxirane as the spacer and polyvinyl alcohol as the coating polymer. The amino acid histidine was explored as a ligand for endotoxins, aiming at its application for endotoxin removal from aqueous solutions. Characterization of the membrane adsorber, analysis of the depyrogenation procedures and the evaluation of endotoxin removal efficiency in static mode are discussed. Ligand density of the membranes was around 7 mg/g dry membrane, allowing removal of up to 65% of the endotoxins. The performance of the membrane adsorber prepared using nylon coated with polyvinyl alcohol and containing histidine as the ligand proved superior to other membrane adsorbers reported in the literature. The lack of endotoxin adsorption on nylon membranes without histidine confirmed that endotoxin removal was due to the presence of the ligand at the membrane surface. Modified membranes were highly stable, exhibiting a lifespan of approximately thirty months

    Immobilized Metal-ion Affinity Chromatography (imac) Of Biomolecules: Fundamental Aspects And Technological Applications [cromatografia De Afinidade Por Íons Metálicos Imobilizados (imac) De Biomoléculas: Aspectos Fundamentais E Aplicações Tecnológicas]

    No full text
    Immobilized Metal Ion Affinity Cromatography - IMAC - is a group-specific based adsorption applied to the purification and structure-function studies of proteins and nucleic acids. The adsorption is based on coordination between a metal ion chelated on the surface of a solid matrix and electron donor groups at the surface of the biomolecule. IMAC is a highly selective, low cost, and easily scaled-up technique being used in research and commercial operations. A separation process can be designed for a specific molecule by just selecting an appropriate metal ion, chelating agent, and operational conditions such as pH, ionic strength, and buffer type.32512881296Everson, R.J., Parker, H.E., (1974) Anal. Chem, 46, p. 1966Porath, J., Carlsson, J., Olsson, I., Belfrage, G., (1975) Nature, 258, p. 598Hochuli, E., (1988) J. Chromatogr, 444, p. 293Hochuli, E., Bannwarth, W., Dobeli, H., Gentz, R., Stuber, D., (1988) BioTechnology, 6, p. 1321Porath, J., (1988) Trends Anal. Chem, 7, p. 254Sulkowski, E., (1989) Bioessays, 10, p. 170Wong, J., Albrigth, R.L., Wang, N.H.W., (1991) Sep. Purif. Methods, 20, p. 49Porath, J.E., (1985) Modern Methods in Protein Chemistry, 2. , Tschesche, H, ed, de Gruyter: New YorkPorath, J., (1992) Protein Expression Purif, 3, p. 263Winzerling, J.J., Berna, P., Porath, J., (1992) Methods: A companion to Methods in Enzymology 4, pp. 4-13. , Academic Press: New YorkChaga, G.S., (2001) J. Biochem. Biophys. Methods, 49, p. 313Gaberc-Porekar, V., Menart, V., (2001) J. Biochem. Biophys. Methods, 49, p. 335Ueda, E.K.M., Gout, P.W., Morganti, L., (2003) J. Chromatogr., A, 988, p. 1Gutiérrez, R., Martín del Valle, E.M., Galán, M.A., (2007) Sep. Purif. Rev, 36, p. 11Sharma, S., Agarwal, G.P., (2002) Sep. Sci. Technol, 37, p. 3491Arnold, F.H., (1991) Bio-Technology, 9, p. 151Lewis, G.N., (1923) Valence and the Structure of Atoms and Molecules, , The Chemical Catalog Company, Inc, New YorkPearson, R.G., (1968) J. Chem. Educ, 45, p. 581Andersson, L., Porath, J., (1986) Anal. Biochem, 154, p. 250Sulkowski, E., (1988) Makromol. Chem. Macromol Symp, 17, p. 334Mantovaara, T., Pertoft, H., Porath, J., (1991) Biotechnol Appl. Biochem, 73, p. 371Beitle, R.R., Ataai, M.M., (1992) AIChE Symp. Series, 88, p. 34Johnson, R.D., Arnold, F.H., (1995) Biotechnol. Bioeng, 48, p. 437Chaga, G., Bochkariov, D.E., Jokhadze, G.G., Hopp, J., Nelson, P., (1999) J. Chromatogr., A, 864, p. 247Clemmitt, R.H., Chase, H.A., (2000) Biotechnol. Bioeng, 67, p. 206Gaberc-Porekar, V., Menart, V., (2005) Chem. Eng. Technol, 28, p. 1306Sulkowski, E., (1985) Trends Biotechnol, 3, p. 1Bossi, A., Righetti, P.G., (1997) Electrophoresis, 18, p. 2012Porath, J., Olin, B., (1983) Biochemistry, 22, p. 1621Oswald, T., Hornbostel, G., Rinas, U., Anspach, F.B., (1997) Biotechnol. Appl. Biochem, 25, p. 109Bresolin, I.T.L., (2006), Dissertação de Mestrado, Universidade Estadual de Campinas, BrasilRibeiro, M.B., (2006) Tese de Doutorado, , Universidade Estadual de Campinas, BrasilSteinmann, L., Porath, J., Hashemi, P., Olin, A., (1994) Talanta, 41, p. 1707Thömmes, J., Kula, M.R., (1995) Biotechnol. Prog, 11, p. 357Serpa, G., Augusto, E.F.P., Tamashiro, W.M.S.C., Ribeiro, M.B., Miranda, E.A., Bueno, S.M.A., (2005) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 816, p. 259Aquino, L.C.L., Sousa, H.R.T., Miranda, E.A., Vilela, L., Bueno, S.M.A., (2006) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 834, p. 68Mellado, M.C.M., Curbelo, D., Nóbrega, R., Castilho, L.R., (2007) J. Chem. Technol. Biotechnol, 82, p. 636Ribeiro, M.B., Vijayalakshmi, M., Todorova-Balvay, D., Bueno, S.M.A., (2008) J. Chromatogr., B: Anal. Technol. Biomed Life Sci, 861, p. 64Serafica, G.C., Pimbley, J., Belford, G., (1994) Biotechnol. Bioeng, 43, p. 21Xi, F., Wu, J.M., (2004) J. Chromatogr., A, 1057, p. 41Feng, S., Pan, C.S., Jiang, X.G., Xu, S.Y., Zhou, H.J., Ye, M.L., Zou, H.F., (2007) Proteomics, 7, p. 351Akgöl, S., Öztür, N., Karagözler, A.A., Uygun, D.A., Uygun, M., Denizli, A., (2008) J. Mol. Catal. B: Enzym, 51, p. 36McCarthy, P., Chattopadhyay, M., Millhauser, G.L., Tsarevsky, N.V., Bombalski, L., Matyjaszewski, K., Shimmin, D., Pohl, C., (2007) Anal. Biochem, 366, p. 1Prikryl, P., Horák, D., Tichá, M., Kuderová, Z., (2006) J. Sep. Sci, 29, p. 2541Nova, C.J.M., Paolucci-Jeanjean, D., Barboiu, M., Belleville, M.P., Rivallin, M., Rios, G., (2006) Desalination, 200, p. 470Farinas, C.S., Reis, P.C., Ferraz, H.C., Salim, V.M.M., Alves, T.L.M., (2006) Anais do 6° Encontro Brasileiro sobre Adsorção, , Maringá, BrasilNajam-Ul-Haq, M., Rainer, M., Heigl, N., Szabo, Z., Valiant, R., Huck, C.W., Engelhardt, H., Bonn, G.K., (2008) Amino Acids, 34, p. 279Berna, P.P., Mrabet, N.T., van Beeumen, J., Devreese, B., Porath, J., Vijayalakshmi, M.A., (1997) Biochemistry, 36, p. 6896Silva, P.T., (2007), Dissertação de Mestrado, Universidade Estadual de Campinas, BrasilChaga, G., Hopp, J., Nelson, P., (1999) Biotechnol. Appl. Biochem, 29, p. 19Ueda, E.K.M., Gout, P.W., Morganti, L., (2001) J. Chromatogr., A, 922, p. 165Porath, J., (1990) J. Molec. Recogn, 3, p. 123Belew, M., Porath, J., (1990) J. Chromatogr, 516, p. 333http://www4.gelifesciences.com/aptrix/upp00919.nsf/Content/F2E6A8 9CDAEF5ACCC1256EB400417DE8/$file/71500187AD.pdf, acessada em Julho 2008Denizli, A., Alkan, M., Garipcan, B., Özkara, S., Pisjrin, E., (2003) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 795, p. 93Jungbauer, A., (2005) J. Chromatogr., A, 1065, p. 3Gelunaitè, L., Luksa, V., Sudziuvienè, O., Bumelis, V., Pesliakas, H., (2000) J. Chromatogr., A, 904, p. 131Pessela, B.C.C., Torres, R., Fuentes, M., Mateo, C., Munilla, R., Vian, A., Carrascosa, A.V., Fernández-Lafuente, R., (2004) J. Chromatogr., A, 1055, p. 93Cass, B., Pham, P.L., Kamen, A., Durocher, Y., (2005) Protein Expression Purif, 40, p. 11Liu, D.Z., Lu, Y.L., Cheng, H.C., Hou, W.C., (2005) J. Agric Food Chem, 53, p. 10219Murphy, J.C., Jewell, D.L., White, K.I., Fox, G.E., Willson, R.C., (2003) Biotechnol. Prog, 19, p. 982Tan, L.H., Kim, D.S., Yoo, I.K., Choe, W.S., (2007) Chem. Eng. Sci, 62, p. 5809Nastasijevic, B., Becker, N.A., Wurster, S.E., Maher III, L.J., (2008) Biochem. Biophys. Res. Commun, 366, p. 420Zhang, C.M., Reslewic, S.A., Glatz, C.E., (2000) Biotechnol. Bioeng, 68, p. 52Dainiak, M.B., Plieva, F.M., Galaev, I.Y., Hatti-Kaul, R., Mattiasson, B., (2005) Biotechnol. Prog, 21, p. 644Hale, J.E., Beidler, D.E., (1994) Anal. Biochem, 222, p. 29Boden, V., Winzerling, J.J., Vijayalakshmi, M., Porath, J., (1995) J. Immunol. Methods, 181, p. 225Yoshida, S., Ioka, D., Matsuoka, H., Endo, H., Ishii, A., (2001) Mol. Biochem. Parasitol, 113, p. 89Vançan, S., Miranda, E.A., Bueno, S.M.A., (2002) Process Biochem, 37, p. 573Tishchenko, G., Dybal, J., Meszarosova, K., Sedlákova, Z., Bleha, M., (2002) J. Chromatogr., A, 954, p. 115Todorova-Balvay, D., Pitiot, O., Bourhim, M., Srikrishnan, T., Vijayalakshmi, M., (2004) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 808, p. 57Chadha, K.C., Grob, P.M., Mikulski, A.J., Davis, L.R.J., Sulkowski, E., (1979) J. Gen. Virol, 43, p. 701Wu, H., Bruley, D.F., (1999) Biotechnol. Prog, 15, p. 928Thiessen, E. E.Bruley, D. F.Adv. Exp. Med. Biol. 2003, 540, 183Chang, Y.K., Horng, J., Huang, R.Z., Lin, S.Y., (2006) Biochem. Eng. J, 29, p. 12Liesiene, J., Racaityte, K., Morkeviciene, M., Valancius, P., Bumelis, V., (1997) J. Chromatogr., A, 764, p. 27Zachariou, M., Hearn, M.T.W., (2000) J. Chromatogr., A, 890, p. 95Hidalgo, A., Betancor, L., Mateo, C., Lopez-Gallego, F., Moreno, R., Berenguer, J., Guisan, J.M., Fernandez-Lafuente, R., (2004) Biotechnol. Prog, 20, p. 1578Farinas, C.S., Bueno, S.M.A., Miranda, E.A., (2003) Adsorpt. Sci. Technol, 21, p. 883Senel, S., Elmas, B., Camli, T., Andac, M., Denizli, A., (2004) Sep. Sci. Technol, 39, p. 3783Azzoni, A.R., Kusnadi, A.R., Miranda, E.A., Nikolov, Z.L., (2002) Biotechnol. Bioeng, 80, p. 268Genaro, A.C.B., Tamagawa, R.E., Azzoni, A.R., Bueno, S.M.A., Miranda, E.A., (2002) Process Biochem, 37, p. 1413Nakagawa, T., Nishiuchi, K., Akaki, J., Iwata, H., Satou, R., Suzuki, F., Nakamura, Y., (2007) Biosci. Biotechnol. Biochem, 71, p. 256Mateo, C., Fernandez-Lorente, G., Pessela, B.C.C., Vian, A., Carrascosa, A.V., Garcia, J.L., Fernandez-Lafuente, R., Guisan, J.M., (2001) J. Chromatogr., A, 915, p. 97Levin, G., Mendive, F., Targovnik, H.M., Cascone, O., Miranda, M.V., (2005) J. Biotechnol, 118, p. 363Tikhonov, R.V., Pechenov, S.E., Belacheu, I.A., Yakimov, S.A., Klyushnichenko, V.E., Boldireva, E.F., Korobko, V.G., Wulfson, A.N., (2001) Protein Express. Purif, 21, p. 176Schmidt, S.R., Schweikart, F., Andersson, M.E., (2007) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 849, p. 154Seeley, E.H., Riggs, L.D., Regnier, F.E., (2005) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 817, p. 81Ahn, Y.H., Park, E.J., Cho, K., Kim, J.Y., Hal, S.H., Ryu, S.H., Yoo, J.S., (2004) Rapid Commun. Mass Spectrom, 18, p. 2495Imanishi, S.Y., Kochin, V., Eriksson, J.E., (2007) Proteomics, 7, p. 174Wilson-Grady, J.T., Villén, J., Gygi, S.P., (2008) J. Proteome Res, 7, p. 1088Min, C.H., Verdine, G.L., (1996) Nucleic Acids Res, 24, p. 3806Cano, T., Murphy, J.C., Fox, G.E., Willson, R.C., (2005) Biotechnol. Prog, 21, p. 1472Potty, A.S.R., Fu, J.Y., Balan, S., Haymore, B.L., Hill, D.J., Fox, G.E., Willson, R.C., (2006) J. Chromatogr., A, 1115, p. 88Tan, L.H., Lai, W.B., Lee, C.T., Kim, D.S., Choe, W.S., (2007) J. Chromatogr., A, 1141, p. 226Laboureau, E., Capiod, J.C., Dessaint, C., Prin, L., Vijayalakshmi, M.A., (1996) J. Chromatogr., B: Anal. Technol. Biomed Life Sci, 680, p. 189Silva, M.E., Franco, T.T., (2000) J. Chromatogr., B: Anal. Technol. Biomed. Life Sci, 743, p. 287Kumar, A., Wahlund, P.O., Kepka, C., Galaev, I.Y., Mattiasson, B., (2003) Biotechnol. Bioeng, 84, p. 494Baek, W.O., Vijayalakshmi, M.A., (1997) Biochim. Biophys. Acta, 1336, p. 394Anissimova, M.V., Baek, W.O., Varlamov, V.P., Mrabet, N.T., Vijayalakshmi, M.A., (2006) J. Mol. Recognit, 19, p. 287Vijayalakshmi, M.A., (1989) Trends Biotechnol, 7, p. 7

    Evaluation Of A Chitosan Membrane For Removal Of Endotoxin From Human Igg Solutions

    No full text
    Cross-linked chitosan membranes - prepared with silica particles as porogen agent - were evaluated for the removal of endotoxin (ET) from human immunoglobulin G (IgG) preparations. The effects of solution conditions on the efficiency of ET removal and IgG recovery were studied. The depyrogenation studies were performed with Tris-HCl at pH 7.0 due to low IgG adsorption and significant degree of protonation (0.50) of the membrane in this buffer. Adsorption ET data were analyzed using the Langmuir model (maximum binding capacity and dissociation constant were 280 μg/mL and 4.0 × 10-11 mol/L, respectively). A high ET clearance (96%) and IgG recovery (99%) were obtained with ET and IgG initial concentration of 116.4 EU/mL and 1.0 mg/mL, respectively. Therefore, these results assure the potential of using chitosan membrane filtration for ET removal in the downstream processing of IgG solutions. © 2006 Elsevier Ltd. All rights reserved.411122522257Verdoliva, A., Pannone, F., Rossi, M., Catello, S., Manfredi, V., Affinity purification of polyclonal antibodies using a new all-D synthetic peptide ligand: comparison with protein A and protein G (2002) J Immunol Methods, 271, pp. 77-88Anspach, F.B., Endotoxin removal by affinity sorbents (2001) J Biochem Biophys Methods, 49, pp. 665-681Kang, Y., Luo, R.G., Effects of ionic strength and pH on endotoxin removal efficiency and protein recovery in an affinity chromatography (2000) Process Biochem, 36, pp. 85-92Adam, O., Vercellone, A., Paul, F., Monsan, P.F., Puzo, G., A nondegradative route for the removal of endotoxin from exopolysaccharides (1995) Anal Biochem, 225, pp. 321-327Wicks, I.P., Howell, M.L., Hancock, T., Kohsaka, H., Olee, T., Carson, D.A., Bacterial lipopolysaccharide copurifies with plasmid DNA: implications for animal models and human gene therapy (1995) Hum Gene Ther, 6, pp. 317-323Zhang, J.P., Wang, Q., Smith, T.R., Hurst, W.E., Sulpizio, T., Endotoxin removal using a synthetic adsorbent of crystalline calcium silicate hydrate (2005) Biotechnol Prog, 21, pp. 1220-1225Hirayama, C., Sakata, M., Chromatographic removal of endotoxin from protein solutions by polymer particles (2002) J Chromatogr B, 781, pp. 419-432Anspach, F.B., Hilbeck, O., Removal of endotoxins by affinity sorbents (1995) J Chromatogr A, 711, pp. 81-92Liu, S., Tobias, R., McClure, S., Styba, G., Shi, Q., Jackowski, G., Removal of endotoxin from recombinant protein preparations (1997) Clin Biochem, 30, pp. 455-463Thömmes, J., Kula, M.-R., Membrane chromatography-an integrative concept in the downstream processing of proteins (1995) Biotechnol Prog, 11, pp. 357-367Klein, E., Affinity membranes: a 10-year review (2000) J Membr Sci, 179, pp. 1-27Anspach, F.B., Petsch, D., Membrane adsorbers for selective endotoxin removal from protein solutions (2000) Process Biochem, 35, pp. 1005-1012Petsch, D., Beeskow, T.C., Anspach, F.B., Deckwer, W.D., Membrane adsorbers for selective removal of bacterial endotoxin (1997) J Chromatogr B, 693, pp. 79-91Petsch, D., Deckwer, W.D., Anspach, F.B., Legallais, C., Vijayalakshmi, M.A., Endotoxin removal with poly(ethyleneimine)-immobilized adsorbers: sepharose 4B versus flat sheet and hollow fibre membranes (1998) J Chromatogr B, 707, pp. 121-130Hanora, A., Plieva, F.M., Hedström, M., Galaev, I.Y., Mattiasson, B., Capture of bacterial endotoxins using a supermacroporous monolithic matrix with immobilized polyethyleneimine, lysozyme or polymyxin B (2005) J Biotechnol, 118, pp. 421-433Acconci, C., Legallais, C., Vijayalakshmi, M.A., Bueno, S.M.A., Depyrogenation of snake antivenom serum solutions by hollow fiber membranes filtration pseudobioaffinity (2000) J Membr Sci, 173, pp. 235-245Zeng, X., Ruckenstein, E., Control of pore sizes in macroporous chitosan and chitin membranes (1996) Ind Eng Chem Res, 35, pp. 4169-4175Zeng, X., Ruckenstein, E., Membrane chromatography: preparation and applications to protein separation (1999) Biotechnol Prog, 15, pp. 1003-1019Gümüşderelioǧlu, M., Agi, P., Adsorption of concanavalin A on the well-characterized macroporous chitosan and chitin membranes (2004) React Funct Polym, 61, pp. 211-220Zeng, X., Ruckenstein, E., Cross-linked macroporous chitosan anion-exchange membranes for protein separations (1998) J Membr Sci, 148, pp. 195-205Freitas, S.S., Machado, R.L., Arruda, E.J., Santana, C.C., Bueno, S.M.A., Endotoxin removal from solutions of F(ab′)2 fragments of equine antibodies against snake venom using macroporous chitosan membrane (2004) J Membr Sci, 234, pp. 67-73Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254Nakata, T., Destruction of challenged endotoxin in a dry heat oven (1994) J Pharm Sci Technol, 48, pp. 59-63Adamson, A.W., (1990) Physical Chemistry of Surfaces. fifth ed., , John Wiley and Sons, Inc., New YorkLi, J., Shao, Y., Chen, Z., Cong, R., Wang, J., Liu, X., Membrane cartridge for endotoxin removal from interferon preparations (2003) J Chromatogr B, 791, pp. 55-61Davidova, V.N., Yermak, I.M., Gorbach, V.I., Krasikova, I.N., Solov'eva, T.F., Interaction of bacterial endotoxins with chitosan. Effect of endotoxin structure, chitosan molecular mass, and ionic strength of the solution on the formation of the complex (2000) Biochemistry (Moscow), 65, pp. 1082-1090Wei, G.L., Liu, X.L., Li, J.H., Liu, Y., Shang, Z.H., Endotoxin removal in some medicines and human serum albumin solution by affinity membranes (2002) Se Pu, 20, pp. 108-11

    Adsorption Of Human Immunoglobuling Onto Ethacrylate And Histidine-linked Methacrylate

    No full text
    The adsorption of human IgG onto GMA (a semirigid methacrylate-based chromatography matrix) and His-GMA adsorbents was studied by chromatography and batch equilibrium binding analysis. IgG molecules adsorbed onto GMA gel by nonspecific hydrophobic interactions and the specificities were similar for both adsorbents. Adsorption data were analyzed using three isotherm models, namely the Langmuir, Freundlich and Langmuir-Freundlich models, and the adsorption parameters were computed. The experimental isotherms were best described by a combined Langmuir-Freundlich model, which indicated the presence of unequal binding sites on both adsorbents and/or positive cooperativity in the binding of the IgG molecules.203251262Adamson, A.W., (1990) Physical Chemistry of Surfaces, Fifth Edition, , John Wiley and Sons, Inc., New YorkAndrade, J.D., (1985) Surface and Interfacial Aspects of Biomedical Polymers, 2, pp. 1-80. , in J.D. Andrade (Editor)Plenum Press, New YorkBradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Analytical Biochemistry, 72, pp. 248-254Bueno, S.M.A., Haupt, K., Vijayalakshmi, M.A., Separation of immunoglobulin G from human serum by pseudobioaffinity chromatography using immobilized L-histidine in hollow fibre membranes (1995) Journal of Chromatography B, 667, pp. 57-67Burnouf, T., Chromatography in plasma fractionation: Benefits and future trends (1995) Journal of Chromatography B, 664, pp. 3-15Burnouf, T., Goubran, H., Radosevich, M., Application of bioaffinity technology in therapeutic extracorporeal plasmapheresis and large-scale fractionation of human plasma (1998) Journal of Chromatography B, 715, pp. 65-80El-Kak, A., Vjayalakshmi, M.A., Study of the separation of mouse monoclonal antibodies by pseudobioaffinity chromatography using matrix-linked histidine and histamine (1991) Journal of Chromatography, 570, pp. 29-41El-Kak, A., Vijayalakshmi, M.A., Separation and purification of IgG1 and IgG2 from IgG-Cohn-II fraction of human plasma by pseudobioaffinity chromatography on histidyl-AH-sepharose (1992) Bioseparation, 3, pp. 47-53El-Kak, A., Manjini, S., Vijayalakshmi, M.A., Interaction of immunoglobulin G with immobilized histidine: Mechanistic and kinetic aspects (1992) Journal of Chromatography, 604, pp. 29-37Füglistaller, P., Comparison of immunoglobulin binding capacities and ligand leakage using eight different protein a affinity chromatography matrices (1989) Journal of Immunological Methods, 124, pp. 171-177Haupt, K., Bueno, S.M.A., Vijayalakshmi, M.A., Interaction of human immunoglobulin G with L-histidine immobilized onto poly(ethylene vinyl alcohol) hollow-fiber membranes (1995) Journal of Chromatography B, 674, pp. 13-21Hermanson, G.T., Mallia, A.K., Smith, P.K., Immobilized affinity ligand techniques (1992), Academic Press, Inc., San DiegoHermanson, G.T., Mattson, G.R., Krohn, R.I., Preparation and use of immunoglobulin-binding affinity supports on emphaze beads (1995) Journal of Chromatography A, 691, pp. 113-122James, E.A., Do, D.D., Equilibria of biomolecules on ion-exchange adsorbents (1991) Journal of Chromatography, 542, pp. 19-28Janson, J.C., Rydén, L., Protein purification. Principles, high resolution methods and applications (1989), VCH Publishers, New YorkJiang, W., Hearn, M.T.W., Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions (1996) Analytical Biochemistry, 242, pp. 45-54Ladisch, M.R., (2001) Bioseparations Engineering, p. 673. , Wiley-Interscience, New YorkLuo, Q., Andrade, J.D., Cooperative adsorption of proteins onto hydroxyapatite (1998) Journal of Colloid Interface Science, 200, pp. 104-113Mandjiny, S., Vijayalakshmi, M.A., Biotechnology of blood proteins, colloque INSERM (1993) John Libbey Eurotext, Montrouge, 227, pp. 189-195. , in C. Rivat and J.-F. Stoltz (Editors)Müller-Schulte, D., Manjini, S., Vijayalakshmi, M.A., Comparative affinity chromatographic studies using novel grafted polyamide and poly(vinyl alcohol) media (1991) Journal of Chromatography, 539, pp. 307-314Özkara, S., Yavuz, H., Patir, S., Arica, M.Y., Denizli, A., Separation of human immunoglobulin G from human plasma with L-histidine immobilized pseudo-specific bioaffinity adsorbents (2002) Separation Science and Technology, 37, pp. 717-731Quiñones, I., Guiochon, G., Extension of a Jovanovic-Freundlich isotherm model to multicomponent adsorption on heterogeneous surfaces (1998) Journal of Chromatography A, 796, pp. 15-40Sharma, S., Agarwal, G.P., Interactions of proteins with immobilized metal ions: A comparative analysis using various isotherm models (2001) Analytical Biochemistry, 288, pp. 126-140Sundberg, L., Porath, J., Preparation of adsorbents for biospecific affinity chromatography. I. Attachment of group-containing ligands to insoluble polymers by means of bifunctional oxiranes (1974) Journal of Chromatography, 90, pp. 87-98Vijayalakshmi, M.A., Pseudobiospecific ligand affinity chromatography (1989) Trends in Biotechnology, 7, pp. 71-76Vola, R., Lombardi, A., Tarditi, L., Björck, L., Mariani, M., Recombinant proteins L and LG: Efficient tools for purification of murine immunoglobulin G fragments (1995) Journal of Chromatography B, 668, pp. 209-21

    Evaluation Of Immobilized Metal Membrane Affinity Chromatography For Purification Of An Immunoglobulin G1 Monoclonal Antibody

    No full text
    The large scale production of monoclonal antibodies (McAbs) has gaining increased relevance with the development of the hybridoma cell culture in bioreactors creating a need for specific efficient bioseparation techniques. Conventional fixed bead affinity adsorption commonly applied for McAbs purification has the drawback of low flow rates and colmatage. We developed and evaluated a immobilized metal affinity chromatographies (IMAC) affinity membrane for the purification of anti-TNP IgG1 mouse McAbs. We immobilized metal ions on a poly(ethylene vinyl alcohol) hollow fiber membrane (Me 2+-IDA-PEVA) and applied it for the purification of this McAbs from cell culture supernatant after precipitation with 50% saturation of ammonium sulphate. The purity of IgG1 in the eluate fractions was high when eluted from Zn2+ complex. The anti-TNP antibody could be eluted under conditions causing no loss of antigen binding capacity. The purification procedure can be considered as an alternative to the biospecific adsorbent commonly applied for mouse IgG1 purification, the protein G-Sepharose. © 2004 Elsevier B.V. All rights reserved.8161-2259268Huse, K., Böhme, H.-J., Scholz, G.H., (2002) J. Biochem. Biophys. Methods, 51, p. 217Goding, J.W., (1995) Monoclonal Antibodies: Principles and Practice, , New YorkBoden, V., Winzerling, J.J., Vijayalakshmi, M., Porath, J., (1995) J. Immunol. Methods, 181, p. 225Verdoliva, A., Pannone, F., Rossi, M., Catello, S., Manfredi, V., (2002) J. Immunol. Methods, 271, p. 77Tishchenko, G., Hodorvá, B., Šimůnek, J., Bleha, M., (2003) J. Chromatogr. a, 983, p. 125El-Kak, A., Vijayalakshmi, M.A., (1991) J. Chromatogr., 570, p. 29Bueno, S.M.A., Haupt, K., Vijayalakshmi, M.A., (1995) J. Chromatogr. B, 667, p. 57Tishchenko, G., Dybal, J., Mészárosová, K., Sedláková, Z., Bleha, M., (2002) J. Chromatogr. a, 954, p. 115Gaberc-Porekar, V., Menart, V., (2001) J. Biochem. Biophys. Methods, 49, p. 335Porath, J., Olin, B., (1983) Biochemistry, 22, p. 1621Hale, J.E., Beidler, D.E., (1994) Anal. Biochem., 222, p. 29Vançan, S., Miranda, E.A., Bueno, S.M.A., (2002) Process Biochem., 37, p. 573Mészárosová, K., Tishchenko, G., Bouchal, K., Bleha, M., (2003) React. Funct. Polym., 56, p. 27Klein, E., (1991) Affinity Membranes. Their Chemistry and Performance in Adsorptive Separation Processes, 5. , John Wiley and Sons IncHari, P.R., Paul, W., Sharma, C.P., (2000) J. Biomed. Mater. Res., 50, p. 110Castilho, L.R., Anspach, F.B., Deckwer, W.-D., (2002) J. Membr. Sci., 207, p. 253Léo, P., Ucelli, P., Augusto, E.F.P., Oliveira, M.S., Tamashiro, W.M.S.C., (2000) Hybridoma, 19, p. 473Belew, M., Porath, J., (1990) J. Chromatogr., 516, p. 333Bueno, S.M.A., Legallais, C., Haupt, K., Vijayalakshmi, M.A., (1996) J. Membr. Sci., 117, p. 45Bradford, M.M., (1976) Anal. Biochem., 72, p. 248Laemmli, U.K., (1970) Nature, 227, p. 680Morrissey, J.H., (1981) Anal. Biochem., 117, p. 307Beitle, R.R., Ataai, M.M., (1993) Biotechnol. Progr., 9, p. 64Berna, P.P., Mrabet, N.T., Vanbeeumen, J., Devreese, B., Porath, J., Vijayalakshmi, M.A., (1997) Biochemistry, 36, p. 6896Adamson, A.W., (1990) Physical Chemistry of Surfaces, , fifth ed. John Wiley and Sons Inc. New YorkAndrade, J.D., (1985) Surface and Interfacial Aspects of Biomedical Polymers, , J.D. Andrade Plenum Press New YorkJiang, W., Hearn, M.T.W., (1996) Anal. Biochem., 242, p. 45Sharma, S., Agarwal, G.P., (2001) Anal. Biochem., 288, p. 126Quiñones, I., Guiochon, G., (1998) J. Chromatogr. a, 796, p. 15Vijayalakshmi, M.A., (1989) Trends Biotechnol., 7, p. 7

    The Effect Of Nacl On The Adsorption Of Human Igg Onto Cm-asp-peva Hollow Fiber Membrane-immobilized Nickel And Cobalt Metal Ions

    No full text
    Over the past decade, immobilized metal-affinity adsorbents have attracted increasing interest for purification of natural and recombinant immunoglobulin G (IgG). In this work, nickel and cobalt metal ions complexed with CM-Asp (carboxymethylaspartate) immobilized on poly(ethylenevinyl alcohol) (PEVA) hollow fiber membranes were evaluated for purification of human IgG from serum. The buffer system and NaCl had important effects on human serum protein adsorption in both adsorbents. Efficient purification of IgG was accomplished in sodium phosphate buffer without NaCl at pH 7.0. Under this condition, the electrostatic interactions are important for adsorption. The Ni(II)-CM-Asp-PEVA had a protein adsorption capacity of 17.5 mg of IgG mL-1 fiber when human serum diluted was loaded in crossflow filtration mode and the eluted IgG had a purity of 82.6 % (based on total protein and IgG, IgM, HSA, and Trf nephelometric analysis). Fitting the experimental IgG adsorption data to the Langmuir and Langmuir-Freundlich models showed that Ni(II)-CM-Asp and Co(II)-CM-Asp had Langmuirean and non-Langmuirean behavior, respectively, with positive cooperativity for IgG-Co(II)-CM-Asp binding, probably due to multipoint interactions (n = 2.12 ± 0.31). Thus, these membranes can be considered as alternative adsorbents for the purification or depletion of IgG from human serum. © 2014 Springer Science+Business Media New York.2005/06/15677688Altintas, E.B., Tuzmen, N., Uzun, L., Denizli, A., Immobilized metal affinity adsorption for antibody depletion from human serum with monosize beads (2007) Ind. Eng. Chem. Res., 46, pp. 7802-7810. , 10.1021/ie061164cAquino, L.C.L., Sousa, H.R.T., Miranda, E.A., Vilela, L., Bueno, S.M.A., Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin (2006) J. Chromatogr. B, 834, pp. 68-76. , 10.1016/j.jchromb.2006.02.015Barroso, T., Temtem, M., Hussain, A., Aguiar-Ricardo, A., Roque, A.C.A., Preparation and characterization of a cellulose affinity membrane for human immunoglobulin G (IgG) purification (2010) J. Membr. Sci., 348, pp. 224-230. , 1:CAS:528:DC%2BD1MXhs1Wns7bF 10.1016/j.memsci.2009.11.004Belew, M., Porath, J., Immobilized metal-ion affinity-chromatography: Effect of solute structure, ligand density and salt concentration on the retention of peptides (1990) J. Chromatogr., 516, pp. 333-354. , 1:CAS:528:DyaK3MXjvVGrsQ%3D%3D 10.1016/S0021-9673(01)89275-XBoden, V., Winzerling, J.J., Vijayalakshmi, M., Porath, J., Rapid one step purification of goat immunoglobulins by immobilized metal ion affinity chromatography (1995) J. Immunol. Methods, 181, pp. 225-232. , 1:CAS:528:DyaK2MXlsFCru78%3D 10.1016/0022-1759(95)00006-VBoi, C., Dimartino, S., Sarti, G.C., Performance of a new protein A affinity membrane for the primary recovery of antibodies (2008) Biotechnol. Prog., 24, pp. 640-647. , 1:CAS:528:DC%2BD1cXlslamsrs%3D 10.1021/bp0704743Borsoi-Ribeiro, M., Bresolin, I.T.L., Vijayalskshmi, M.A., Bueno, S.M.A., Behavior of human immunoglobulin G adsorption onto immobilized Cu(II) affinity hollow-fiber membranes (2013) J. Mol. Recognit., 26, pp. 514-520. , 1:CAS:528:DC%2BC3sXhtlent73E 10.1002/jmr.2296Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, pp. 248-254. , 1:CAS:528:DyaE28XksVehtrY%3D 10.1016/0003-2697(76)90527-3Bresolin, I.T.L., Miranda, E.A., Bueno, S.M.A., Cromatografia de afinidade por íons metálicos imobilizados (IMAC) de biomoléculas: Aspectos fundamentais e aplicações tecnológicas (2009) Quim. Nova, 32, pp. 1288-1296. , 1:CAS:528:DC%2BD1MXpt12ksbw%3D 10.1590/S0100-40422009000500035Bresolin, I.T.L., Borsoi-Ribeiro, M., Tamashiro, W., Augusto, E.F.P., Vijayalakshmi, M.A., Bueno, S.M.A., Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG1 monoclonal antibodies purification: The effect of chelating ligand and support (2010) Appl. Biochem. Biotechnol., 160, pp. 2148-2165. , 1:CAS:528:DC%2BC3cXjs1Ojsb8%3D 10.1007/s12010-009-8734-5Bueno, S.M.A., Haupt, K., Vijayalakshmi, M.A., Separation of immunoglobulin G from human serum by pseudobioaffinity chromatography using immobilized l-histidine in hollow fibre membranes (1995) J. Chromatogr. B, 667, pp. 57-67. , 1:CAS:528:DyaK2MXlsFCktLY%3D 10.1016/0378-4347(94)00601-ZChaga, G.S., Twenty-five years of immobilized metal ion affinity chromatography: Past, present and future (2001) J. Biochem. Biophys. Methods, 49, pp. 313-334. , 1:CAS:528:DC%2BD3MXnvFCmt7Y%3D 10.1016/S0165-022X(01)00206-8Chaga, G., Hopp, J., Nelson, P., Immobilized metal ion affinity chromatography on Co2+- carboxymethylaspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle (1999) Biotechnol. Appl. Biochem., 29, pp. 19-24. , 1:CAS:528:DyaK1MXhsFyqtLc%3DGaberc-Porekar, V., Menart, V., Potential for using histidine tag in purification of proteins at large scale (2005) Chem. Eng. Technol., 28, pp. 1306-1314. , 1:CAS:528:DC%2BD2MXht1yksbvI 10.1002/ceat.200500167Gutiérrez, R., Martín Del Valle, E.M., Galán, M.A., Immobilized metal-ion affinity chromatography: Status and trends (2007) Sep. Purif. Rev., 36, pp. 71-111. , 10.1080/15422110601166007Hale, J.E., Beidler, D.E., Purification of humanized murine and murine monoclonal antibodies using immobilized metal-affinity chromatography (1994) Anal. Biochem., 222, pp. 29-33. , 1:CAS:528:DyaK2cXmt1yitr0%3D 10.1006/abio.1994.1449Johnson, R.D., Wang, Z.-G., Arnold, F.H., Multipoint binding in metal-affinity chromatography. 2. Effect of pH and imidazole on chromatographic retention of engineered histidine-containing cytochromes c (1996) J. Phys. Chem., 100, pp. 5134-5139. , 1:CAS:528:DyaK28XhtleisLY%3D 10.1021/jp9523682Klein, E., (1991) Affinity Membranes: Their Chemistry and Performance in Adsorptive Separation Processes, , Wiley Hoboken, New JerseyKracalikova, K., Bleha, M., Chelating polymer-based membranes. Preparation and use for metal ion scavenging and sorption of murine immunoglobulin G by immobilized Ni(II) ions (2008) Polym. Bull., 61, pp. 147-156. , 1:CAS:528:DC%2BD1cXos1Wrtr4%3D 10.1007/s00289-008-0940-8Kracalikova, K., Tishchenko, G., Bleha, M., Effect of the matrix structure and concentration of polymer-immobilized Ni2+-iminodiacetic acid complexes on retention of IgG1 (2006) J. Biochem. Biophys. Methods, 67, pp. 7-25. , 1:CAS:528:DC%2BD28XisF2jtrw%3D 10.1016/j.jbbm.2005.04.010Laemmli, U.K., Cleavage of structural proteins during assembly of head of bacteriophage-t4 (1970) Nature, 227, pp. 680-685. , 1:CAS:528:DC%2BD3MXlsFags7s%3D 10.1038/227680a0Lucarini, A.C., Kilikian, B.V., Comparative study of Lowry and Bradford methods: Interfering substances (1999) Biotechnol. Tech., 13, pp. 149-154. , 1:CAS:528:DyaK1MXisFKhsbk%3D 10.1023/A:1008995609027Mantovaara, T., Pertoft, H., Porath, J., Carboxymethylated aspartic-acid agarose, a selective adsorbent for calcium-binding proteins, preliminary studies (1991) Biotechnol. Appl. Biochem., 13, pp. 315-322. , 1:CAS:528:DyaK3MXmtVagsLk%3DMorrissey, J.H., Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity (1981) Anal. Biochem., 117, pp. 307-310. , 1:CAS:528:DyaL38XjtFWjtg%3D%3D 10.1016/0003-2697(81)90783-1Porath, J., IMAC: Immobilized metal ion affinity based chromatography (1988) Trends Anal. Chem., 7, pp. 254-259. , 1:CAS:528:DyaL1cXmtVOls78%3D 10.1016/0165-9936(88)85074-XPorath, J., Immobilized metal ion affinity chromatography (1992) Protein Expres. Purif., 3, pp. 263-281. , 1:CAS:528:DyaK38XlsVKgu7Y%3D 10.1016/1046-5928(92)90001-DPrasanna, R.R., Vijayalakshmi, M.A., Characterization of metal chelate methacrylate monolithic disk for purification of polyclonal and monoclonal immunoglobulin G (2010) J. Chromatogr. A, 1217, pp. 3660-3667. , 1:CAS:528:DC%2BC3cXlvVeitL0%3D 10.1016/j.chroma.2010.03.058Rajak, P., Vijayalakshmi, M.A., Jayaprakas, N.S., Purification of monoclonal antibodies, IgG1, from cell culture supernatant by use of metal chelate convective interaction media monolithic columns (2012) Biomed. Chromatogr., 26, pp. 1488-1493. , 1:CAS:528:DC%2BC38XislahsLk%3D 10.1002/bmc.2721Ribeiro, M.B., Vijayalakshmi, M., Todorova-Balvay, D., Bueno, S.M.A., Effect of IDA and TREN chelating agents and buffer systems on the purification of human IgG with immobilized nickel affinity membranes (2008) J. Chromatogr. B, 861, pp. 64-73. , 1:CAS:528:DC%2BD2sXhsVOks73I 10.1016/j.jchromb.2007.11.018Serpa, G., (2002) Purificação de Anticorpos Monoclonais Anti-TNP Do Isotipo IgG1 Utilizando Cromatografia em Membranas de Afinidade Com Íons Metálicos Imobilizados, , MSc. Thesis. University of Campinas, BrazilSerpa, G., Augusto, E.F.P., Tamashiro, W., Ribeiro, M.B., Miranda, E.A., Bueno, S.M.A., Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody (2005) J. Chromatogr. B, 816, pp. 259-268. , 1:CAS:528:DC%2BD2MXmvFahsQ%3D%3D 10.1016/j.jchromb.2004.11.043Sharma, S., Agarwal, G.P., Interactions of proteins with immobilized metal ions: A comparative analysis using various isotherm models (2001) Anal. Biochem., 288, pp. 126-140. , 1:CAS:528:DC%2BD3MXisFCisQ%3D%3D 10.1006/abio.2000.4894Sulkowski, E., The saga of IMA and MIT (1989) BioEssays, 10, pp. 170-175. , 1:CAS:528:DyaL1MXlslSht7g%3D 10.1002/bies.950100508Thömmes, J., Kula, M.-R., Membrane chromatography: An integrative concept in downstream processing of proteins (1995) Biotechnol. Prog., 11, pp. 357-367. , 10.1021/bp00034a001Todorova-Balvay, D., Pitiot, O., Bourhim, M., Srikrishnan, T., Vijayalakshmi, M., Immobilized metal-ion affinity chromatography of human antibodies and their proteolytic fragments (2004) J. Chromatogr. B, 808, pp. 57-62. , 1:CAS:528:DC%2BD2cXlsVSitbc%3D 10.1016/j.jchromb.2004.05.034Todorova, D., Vijayalakshmi, M.A., Immobilized metal-ion affinity chromatography (2006) Handbook of Affinity Chromatography, pp. 291-324. , D.S. Hage (eds) 92 CRC Press Taylor & Francis Group Boca RatonUeda, E.K.M., Gout, P.W., Morganti, L., Current and prospective applications of metal ion-protein binding (2003) J. Chromatogr. A, 988, pp. 1-23. , 1:CAS:528:DC%2BD3sXptl2ksw%3D%3D 10.1016/S0021-9673(02)02057-5Uygun, D.A., Şenay, R.H., Türkcan, C., Akgöl, S., Denizli, A., Metal-chelating nanopolymers for antibody purification from human plasma (2012) Appl. Biochem. Biotechnol., 1608, pp. 1528-1539. , 10.1007/s12010-012-9875-5Vançan, S., Miranda, E.A., Bueno, S.M.A., IMAC of human IgG: Studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems (2002) Process Biochem., 37, pp. 573-579. , 10.1016/S0032-9592(01)00242-4Vijayalakshmi, M.A., Pseudobiospecific ligand affinity chromatography (1989) Trends Biotechnol., 7, pp. 71-76. , 1:CAS:528:DyaL1MXktVensrY%3D 10.1016/0167-7799(89)90067-XWinzerling, J.J., Berna, P., Wang, N.H.W., Immobilized metal ion affinity chromatography (1992) Methods: A Companion to Methods in Enymology, pp. 4-13. , 4 Academic Press New YorkYang, Y.-H., Wu, T.-T., Suen, S.-Y., Lin, S.-C., Equilibrium adsorption of poly(His)-tagged proteins on immobilized metal affinity chromatographic adsorbents (2011) Biochem. Eng. J., 54, pp. 1-9. , 1:CAS:528:DC%2BC3MXjs1Sqs7w%3D 10.1016/j.bej.2010.12.005Zachariou, M., Hearn, M.T.W., Adsorption and selectivity characteristics of several human serum proteins with immobilised hard Lewis metal ion-chelate adsorbents (2000) J. Chromatogr. A, 890, pp. 95-116. , 1:CAS:528:DC%2BD3cXltlemt70%3D 10.1016/S0021-9673(00)00462-3Zhou, Y., Wang, Z., Zhang, Q., Xi, X., Zhang, J., Yang, W., Equilibrium and thermodynamic studies on adsorption of BSA using PVDF microfiltration membrane (2012) Desalination, 307, pp. 61-67. , 1:CAS:528:DC%2BC38XhsVCitrvL 10.1016/j.desal.2012.09.00

    Endotoxin Removal From Solutions Of F(ab′)2 Fragments Of Equine Antibodies Against Snake Venom Using Macroporous Chitosan Membrane

    No full text
    The adsorptive filtration technique using chitosan membranes was used to remove endotoxin (ET) from buffers and bothrops antivenom serum (F(ab′)2 fragments of equine antibodies). Macroporous chitosan membrane was prepared from chitosan using silica particles as porogen agent. The effects of solution conditions on the efficiency of endotoxin removal and protein recovery were studied. The ET concentrations were reduced to 0.58 and 71.6EU/ml, respectively, when Tris-HCl pH 7.0 buffer with 18.6 and 8092.5EU/ml was passed through the chitosan membrane. This buffer was used to evaluate ET removal in the presence of the equine F(ab′)2 fragments. The results showed that the presence of protein in the feed solution did not influence much the clearance of this membrane. Removal of 97% of the ET and recovery of 94% of the F(ab′)2 were obtained at an initial ET and F(ab′)2 concentration of 974.4EU/ml and 18.6mg/ml, respectively. © 2004 Elsevier B.V. All rights reserved.2341-26773Petsch, D., Anspach, F.B., Endotoxin removal from protein solutions (2000) J. Biotechnol., 76, p. 97Sharma, S.K., Endotoxin detection and elimination in biotechnology (1986) Biotechnol. Appl. Biochem., 8, p. 5Li, L., Luo, R.G., Quantitative determination of Ca2+ effects on endotoxin removal and protein yield in a two-stage ultrafiltration process (1999) Sep. Sci. Technol., 34, p. 1729Aida, Y., Pabst, M.J., Removal of endotoxin from protein solutions by phase separation using Triton X-114 (1990) J. Immunol. Meth., 132, p. 191Neidhardt, E.A., Luther, M.A., Recny, M.A., Rapid two-step purification process for the preparation of pyrogen-free murine immunoglobulin G1 monoclonal antibodies (1992) J. Chromatogr., 590, p. 255Matsumae, H., Minobe, S., Kindan, K., Watanabe, T., Sato, T., Tosa, T., Specific removal of endotoxin from protein solutions by immobilized histidine (1990) Biotechnol. Appl. Biochem., 12, p. 129Anspach, F.B., Hilbeck, O., Removal of endotoxin by affinity sorbents (1995) J. Chromatogr. a, 711, p. 81Hirayama, C., Sakata, M., Nakamura, M., Ihara, H., Kunitake, M., Todokoro, M., Preparation of poly(ε-lysine) adsorbents and application to selective removal of lipopolysaccharides (1999) J. Chromatogr. B, 721, p. 187Anspach, F.B., Petsch, D., Membrane adsorbers for selective endotoxin removal from protein solutions (2000) Process Biochem., 35, p. 1005Dainippon Pharmaceuticals, An agent for removing nucleic acids or endotoxin and a method for the removal, Eur. Patent 0,240,348 (1987)Kurita Water Ind., Removing nucleic acid and endotoxin from solution using chitosan treatment, Jpn. Patent 07,289,238 (1995)Morimoto, S., Sakata, M., Iwata, T., Esaki, A., Hirayama, C., Preparations and applications of polyethyleneimine-immobilized cellulose fibres for endotoxin removal (1995) Polym. J., 27, p. 831Brandt, S., Goffe, R.A., Kessler, S.B., O'Connor, J.L., Zale, S.E., Membrane-based affinity technology for commercial scale purifications (1988) BioTechnology, 6, p. 779Thömmes, J., Kula, M.-R., Membrane chromatography - An integrative concept in the downstream processing of proteins (1995) Biotech. Progr., 11, p. 357Petsch, D., Beeskow, T.C., Anspach, F.B., Deckwer, W.-D., Membrane adsorbers for selective removal of bacterial endotoxin (1997) J. Chromatogr. B, 693, p. 79Petsch, D., Deckwer, W.D., Anspach, F.B., Legallais, C., Vijayalakshmi, M.A., Endotoxin removal with poly(ethyleneimine)-immobilized adsorbers: Sepharose 4B versus flat sheet and hollow fibre membranes (1998) J. Chromatogr. B, 707, p. 121Legallais, C., Anspach, F.B., Bueno, S.M.A., Haupt, K., Vijayalakshmi, M.A., Strategies for the depyrogenation of contaminated immunoglobulin G solutions by histidine-immobilized hollow fiber membrane (1997) J. Chromatogr. B, 691, p. 33Acconci, C., Legallais, C., Vijayalakshmi, M.A., Bueno, S.M.A., Depyrogenation of snake antivenom serum solutions by hollow fiber membranes filtration pseudobioaffinity (2000) J. Membr. Sci., 173, p. 235Zeng, X., Ruckenstein, E., Control of pore sizes in macroporous chitosan and chitin membranes (1996) Ind. Eng. Chem. Res., 35, p. 4169Zeng, X., Ruckenstein, E., Membrane chromatography: Preparation and applications to protein separation (1999) Biotech. Progr., 15, p. 1003Davidova, V.N., Yermak, I.M., Gorbach, V.I., Krasikova, I.N., Solov'Eva, T.F., Interaction of bacterial endotoxins with chitosan. Effect of endotoxin structure, chitosan molecular mass, and ionic strength of the solution on the formation of the complex (2000) Biochemistry (Moscow), 65, p. 1082Nakata, T., Destruction of challenged endotoxin in a dry heat oven (1994) J. Pharm. Sci. Technol., 48, p. 59Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem., 72, p. 248Rinaudo, M., Pavlov, G., Desbrières, J., Influence of acetic acid concentration on the solubilization of chitosan (1999) Polymer, 40, p. 702
    corecore