129 research outputs found

    Nernst branes from special geometry

    Get PDF
    We construct new black brane solutions in U(1)U(1) gauged N=2{\cal N}=2 supergravity with a general cubic prepotential, which have entropy density sT1/3s\sim T^{1/3} as T0T \rightarrow 0 and thus satisfy the Nernst Law. By using the real formulation of special geometry, we are able to obtain analytical solutions in closed form as functions of two parameters, the temperature TT and the chemical potential μ\mu. Our solutions interpolate between hyperscaling violating Lifshitz geometries with (z,θ)=(0,2)(z,\theta)=(0,2) at the horizon and (z,θ)=(1,1)(z,\theta)=(1,-1) at infinity. In the zero temperature limit, where the entropy density goes to zero, we recover the extremal Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to (z,θ)=(3,1)(z,\theta)=(3,1).Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in Section 3. No changes to conclusions. References adde

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Corner contributions to holographic entanglement entropy

    Full text link
    The entanglement entropy of three-dimensional conformal field theories contains a universal contribution coming from corners in the entangling surface. We study these contributions in a holographic framework and, in particular, we consider the effects of higher curvature interactions in the bulk gravity theory. We find that for all of our holographic models, the corner contribution is only modified by an overall factor but the functional dependence on the opening angle is not modified by the new gravitational interactions. We also compare the dependence of the corner term on the new gravitational couplings to that for a number of other physical quantities, and we show that the ratio of the corner contribution over the central charge appearing in the two-point function of the stress tensor is a universal function for all of the holographic theories studied here. Comparing this holographic result to the analogous functions for free CFT's, we find fairly good agreement across the full range of the opening angle. However, there is a precise match in the limit where the entangling surface becomes smooth, i.e., the angle approaches π\pi, and we conjecture the corresponding ratio is a universal constant for all three-dimensional conformal field theories. In this paper, we expand on the holographic calculations in our previous letter arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match published version, typos fixe

    Improved exclusion limit for light dark matter from e+e- annihilation in NA64

    Get PDF
    The current most stringent constraints for the existence of sub-GeV dark matter coupling to Standard Model via a massive vector boson A′ were set by the NA64 experiment for the mass region mA′≲250 MeV, by analyzing data from the interaction of 2.84×1011 100-GeV electrons with an active thick target and searching for missing-energy events. In this work, by including A′ production via secondary positron annihilation with atomic electrons, we extend these limits in the 200-300 MeV region by almost an order of magnitude, touching for the first time the dark matter relic density constrained parameter combinations. Our new results demonstrate the power of the resonant annihilation process in missing energy dark-matter searches, paving the road to future dedicated e+ beam efforts

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as a shield, and would be observed either through their a(s)→γγ decay in the rest of the HCAL detector, or as events with a large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing of the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10^{11} electrons on target, allowing us to set new limits on the a(s)γγ-coupling strength for a(s) masses below 55 MeV

    Search for pseudoscalar bosons decaying into e+e- pairs in the NA64 experiment at the CERN SPS

    Get PDF
    We report the results of a search for a light pseudoscalar particle a that couples to electrons and decays to e+e- performed using the high-energy CERN SPS H4 electron beam. If such light pseudoscalar exists, it could explain the ATOMKI anomaly (an excess of e+e- pairs in the nuclear transitions of Be8 and He4 nuclei at the invariant mass ≃17 MeV observed by the experiment at the 5 MV Van de Graaff accelerator at ATOMKI, Hungary). We used the NA64 data collected in the "visible mode"configuration with a total statistics corresponding to 8.4×1010 electrons on target (EOT) in 2017 and 2018. In order to increase sensitivity to small coupling parameter ϵ we also used the data collected in 2016-2018 in the "invisible mode"configuration of NA64 with a total statistics corresponding to 2.84×1011 EOT. The background and efficiency estimates for these two configurations were retained from our previous analyses searching for light vector bosons and axionlike particles (ALP) (the latter were assumed to couple predominantly to γ). In this work we recalculate the signal yields, which are different due to different cross section and lifetime of a pseudoscalar particle a, and perform a new statistical analysis. As a result, the region of the two dimensional parameter space ma-ϵ in the mass range from 1 to 17.1 MeV is excluded. At the mass of the central value of the ATOMKI anomaly (the first result obtained on the beryllium nucleus, 16.7 MeV) the values of ϵ in the range 2.1×10-4<ϵ<3.2×10-4 are excluded

    Holographic entanglement entropy in AdS4/BCFT3 and the Willmore functional

    Get PDF
    We study the holographic entanglement entropy of spatial regions having arbitrary shapes in the AdS4/BCFT3 correspondence with static gravitational backgrounds, focusing on the subleading term with respect to the area law term in its expansion as the UV cutoff vanishes. An analytic expression depending on the unit vector normal to the minimal area surface anchored to the entangling curve is obtained. When the bulk spacetime is a part of AdS4, this formula becomes the Willmore functional with a proper boundary term evaluated on the minimal surface viewed as a submanifold of a three dimensional flat Euclidean space with boundary. For some smooth domains, the analytic expressions of the finite term are reproduced, including the case of a disk disjoint from a boundary which is either flat or circular. When the spatial region contains corners adjacent to the boundary, the subleading term is a logarithmic divergence whose coefficient is determined by a corner function that is known analytically, and this result is also recovered. A numerical approach is employed to construct extremal surfaces anchored to entangling curves with arbitrary shapes. This analysis is used both to check some analytic results and to find numerically the finite term of the holographic entanglement entropy for some ellipses at finite distance from a flat boundary

    Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses) via horizontal gene transfer (HGT). It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes.</p> <p>Results</p> <p>Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA) viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep)-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses.</p> <p>Conclusions</p> <p>Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.</p

    On shape dependence of holographic entanglement entropy in AdS4/CFT3

    Get PDF
    We study the finite term of the holographic entanglement entropy of finite domains with smooth shapes and for four dimensional gravitational backgrounds. Analytic expressions depending on the unit vectors normal to the minimal area surface are obtained for both stationary and time dependent spacetimes. The special cases of AdS4, asymptotically AdS4 black holes, domain wall geometries and Vaidya-AdS backgrounds have been analysed explicitly. When the bulk spacetime is AdS4, the finite term is the Willmore energy of the minimal area surface viewed as a submanifold of the three dimensional flat Euclidean space. For the static spacetimes, some numerical checks involving spatial regions delimited by ellipses and non convex domains have been performed. In the case of AdS4, the infinite wedge has been also considered, recovering the known analytic formula for the coefficient of the logarithmic divergence
    corecore