15 research outputs found

    Probing hidden sectors with a muon beam: Implication of spin-0 dark matter mediators for the muon (g-2) anomaly and the validity of the WeiszÀcker-Williams approach

    No full text
    In addition to vector (V) type new particles extensively discussed previously, both CP-even (S) and CP-odd (P) spin-0 dark matter (DM) mediators can couple to muons and be produced in the bremsstrahlung reaction ÎŒ-+N→Ό-+N+S(P). Their possible subsequent invisible decay into a pair of Dirac DM particles, S(P)â†’Ï‡Ï‡ÂŻ, can be detected in fixed target experiments through missing energy signature. In this paper, we focus on the case of experiments using high-energy muon beams. For this reason, we derive the differential cross sections involved using the phase space WeiszĂ€cker-Williams approximation and compare them to the exact-tree-level calculations. The formalism derived can be applied in various experiments that could observe muon-spin-0 DM interactions. This can happen in present and future proton beam-dump experiments such as NA62, SHIP, HIKE, and SHADOWS; in muon fixed target experiments as NA64ÎŒ, MUonE and M3; in neutrino experiments using powerful proton beams such as DUNE. In particular, we focus on the NA64ÎŒ experiment case, which uses a 160 GeV muon beam at the CERN Super Proton Synchrotron accelerator. We compute the derived cross sections, the resulting signal yields and we discuss the experiment projected sensitivity to probe the relic DM parameter space and the (g-2)ÎŒ anomaly favored region considering 1011 and 1013 muons on target.ISSN:1550-7998ISSN:0556-2821ISSN:1550-236

    Neotropical xenarthrans: a dataset of occurrence of xenarthran species in the Neotropics.

    No full text
    International audienceXenarthrans—anteaters, sloths, and armadillos—have essential functions forecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosys-tem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts withdomestic dogs, these species have been threatened locally, regionally, or even across their fulldistribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths.Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae(3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data onDasypus pilo-sus(Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized,but new genetic studies have revealed that the group is represented by seven species. In thisdata paper, we compiled a total of 42,528 records of 31 species, represented by occurrence andquantitative data, totaling 24,847 unique georeferenced records. The geographic range is fromthe southern United States, Mexico, and Caribbean countries at the northern portion of theNeotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regardinganteaters,Myrmecophaga tridactylahas the most records (n=5,941), andCyclopessp. havethe fewest (n=240). The armadillo species with the most data isDasypus novemcinctus(n=11,588), and the fewest data are recorded forCalyptophractus retusus(n=33). Withregard to sloth species,Bradypus variegatushas the most records (n=962), andBradypus pyg-maeushas the fewest (n=12). Our main objective with Neotropical Xenarthrans is to makeoccurrence and quantitative data available to facilitate more ecological research, particularly ifwe integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, andNeotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure,habitat loss, fragmentation effects, species invasion, and climate change effects will be possiblewith the Neotropical Xenarthrans data set. Please cite this data paper when using its data inpublications. We also request that researchers and teachers inform us of how they are usingthese data

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    No full text
    International audienceLiquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation
    corecore