13 research outputs found

    Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes

    Full text link
    The coherent control of scattering processes is considered, with electron impact dissociation of H2+_2^+ used as an example. The physical mechanism underlying coherently controlled stationary state scattering is exposed by analyzing a control scenario that relies on previously established entanglement requirements between the scattering partners. Specifically, initial state entanglement assures that all collisions in the scattering volume yield the desirable scattering configuration. Scattering is controlled by preparing the particular internal state wave function that leads to the favored collisional configuration in the collision volume. This insight allows coherent control to be extended to the case of time-dependent scattering. Specifically, we identify reactive scattering scenarios using incident wave packets of translational motion where coherent control is operational and initial state entanglement is unnecessary. Both the stationary and time-dependent scenarios incorporate extended coherence features, making them physically distinct. From a theoretical point of view, this work represents a large step forward in the qualitative understanding of coherently controlled reactive scattering. From an experimental viewpoint, it offers an alternative to entanglement-based control schemes. However, both methods present significant challenges to existing experimental technologies

    Global typologies of coastal wetland status to inform conservation and management

    Get PDF
    Global-scale conservation initiatives and policy instruments rely on ecosystem indicators to track progress towards targets and objectives. A deeper understanding of indicator interrelationships would benefit these efforts and help characterize ecosystem status. We study interrelationships among 34 indicators for mangroves, saltmarsh, and seagrass ecosystems, and develop data-driven, spatially explicit typologies of coastal wetland status at a global scale. After accounting for environmental covariates and gap-filling missing data, we obtained two levels of clustering at 5 and 18 typologies, providing outputs at different scales for different end users. We generated 2,845 cells (1° (lat) × 1° (long)) globally, of which 29.7% were characterized by high land- and marine-based impacts and a high proportion of threatened species, 13.5% by high climate-based impacts, and 9.6% were refuges with lower impacts, high fish density and a low proportion of threatened species. We identify instances where specific actions could have positive outcomes for coastal wetlands across regions facing similar issues. For example, land- and marine-based threats to coastal wetlands were associated with ecological structure and function indicators, suggesting that reducing these threats may reduce habitat degradation and threats to species persistence. However, several interdimensional relationships might be affected by temporal or spatial mismatches in data. Weak relationships mean that global biodiversity maps that categorize areas by single indicators (such as threats or trends in habitat size) may not be representative of changes in other indicators (e.g., ecosystem function). By simplifying the complex global mosaic of coastal wetland status and identifying regions with similar issues that could benefit from knowledge exchange across national boundaries, we help set the scene for globally and regionally coordinated conservation

    Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes

    Get PDF
    Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health

    Ex vivo efficacy of BCMA‐bispecific antibody TNB‐383B in relapsed/refractory multiple myeloma

    No full text
    Abstract TNB‐383B is a fully human BCMA‐targeting T‐cell engaging bispecific monoclonal antibody (T‐BsAb). We assessed ex vivo efficacy of this drug to mediate killing of bone marrow mononuclear cells (BMMCs) freshly isolated from 10 patients with relapsed multiple myeloma (MM). BMMC were treated ex vivo with TNB‐383B at doses ranging from 0.001‐1 μg. Plasma cell (PC) lysis, viability, BCMA expression, CTL distribution, and degranulation were assessed by flow cytometry. Cytokine response to TNB‐383B was quantified by multiplex protein assay. Dose‐dependent PC lysis was triggered in all cases by TNB‐383B at doses as low as 0.001 μg (P = .0102). Primary MM cells varied in BCMA expression. High BCMA+ PC count correlated with increased PC lysis (P = .005) and significant CTL degranulation specific to TNB‐383B treatment (P = .0153 at 1 μg). High E:T ratio in bone marrow specimens led to lower viable and higher apoptotic PC compared with low E:T ratio (P < .001). Three cytokines were significantly modulated by TNB‐383B: IL‐2/TNFα increased by ∼4 ± 3.5‐fold average (P < .005 at 1 μg) and IP10 increased by ∼50 ± 15‐fold (P < .001 at 1 μg). We conclude that TNB‐383B triggers primary PC lysis and CTL degranulation in a dose‐dependent fashion ex vivo with no T cell expansion and mild increase of CRS‐associated cytokines
    corecore