25 research outputs found

    Identification of genes associated with abiotic stress tolerance in sweetpotato using weighted gene co-expression network analysis

    No full text
    Sweetpotato, Ipomoea batatas (L.), a key food security crop, is negatively impacted by heat, drought, and salinity stress. The orange-fleshed sweetpotato cultivar “Beauregard” was exposed to heat, salt, and drought treatments for 24 and 48 h to identify genes responding to each stress condition in leaves. Analysis revealed both common (35 up regulated, 259 down regulated genes in the three stress conditions) and unique sets of up regulated (1337 genes by drought, 516 genes by heat, and 97 genes by salt stress) and down regulated (2445 genes by drought, 678 genes by heat, and 204 genes by salt stress) differentially expressed genes (DEGs) suggesting common, yet stress-specific transcriptional responses to these three abiotic stressors. Gene Ontology analysis of down regulated DEGs common to both heat and salt stress revealed enrichment of terms associated with “cell population proliferation” suggestive of an impact on the cell cycle by the two stress conditions. To identify shared and unique gene co-expression networks under multiple abiotic stress conditions, weighted gene co-expression network analysis was performed using gene expression profiles from heat, salt, and drought stress treated ‘Beauregard’ leaves yielding 18 co-expression modules. One module was enriched for “response to water deprivation,” “response to abscisic acid,” and “nitrate transport” indicating synergetic crosstalk between nitrogen, water, and phytohormones with genes encoding osmotin, cell expansion, and cell wall modification proteins present as key hub genes in this drought-associated module. This research lays the groundwork for exploring to a further degree, mechanisms for abiotic stress tolerance in sweetpotato

    Transcriptomic analysis of sweet potato under dehydration stress identifies candidate genes for drought tolerance

    No full text
    Sweet potato (Ipomoea batatas [L.] Lam.) is an important subsistence crop in Sub‐Saharan Africa, yet as for many crops, yield can be severely impacted by drought stress. Understanding the genetic mechanisms that control drought tolerance can facilitate the development of drought‐tolerant sweet potato cultivars. Here, we report an expression profiling study using the US‐bred cultivar, Beauregard, and a Ugandan landrace, Tanzania, treated with polyethylene glycol (PEG) to simulate drought and sampled at 24 and 48 hr after stress. At each time‐point, between 4,000 to 6,000 genes in leaf tissue were differentially expressed in each cultivar. Approximately half of these differentially expressed genes were common between the two cultivars and were enriched for Gene Ontology terms associated with drought response. Three hundred orthologs of drought tolerance genes reported in model species were identified in the Ipomoea trifida reference genome, of which 122 were differentially expressed under at least one experimental condition, constituting a list of drought tolerance candidate genes. A subset of genes was differentially regulated between Beauregard and Tanzania, representing genotype‐specific responses to drought stress. The data analyzed and reported here provide a resource for geneticists and breeders toward identifying and utilizing drought tolerance genes in sweet potato

    Genome evolution and diversity of wild and cultivated potatoes

    No full text
    Potato (Solanum tuberosum L.) is the world’s most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1–4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop

    Quantitative trait loci and diferential gene expression analyses reveal the genetic basis for negatively associated beta‑carotene and starch content in hexaploid sweetpotato (Ipomoea batatas (L.) Lam).

    Get PDF
    Thirteen fruits, eight legumes and three tubers consumed in the Andean regions of Ecuador were studied to determine their bioactive compounds, organic acids, sugars content, total antioxidant capacity, as well as to determine which among them showed the greatest contribution in terms of antioxidant activity and which compounds contributed to it. Among fruits, taxo fruits (Passiflora mollissima (Kunth) L.H. Bailey) presented the highest values of total phenolic, carotene content, and total antioxidant capacity. The ají ratón (Capsicum chinense Jacq) showed the highest content of vitamin C. Taxo showed the highest content of β carotene, whilst lycopene was identified only in guayaba fruits (Psidium guajava L.) and ají ratón was the principal source of lutein. In legumes, chocho perla (Lupinus mutabilis Sweet) showed the highest values for both total phenolic and flavonoid content, whilst frejol negro (Phaseolus vulgaris L.) and frejol canario (Vigna unguiculata (L.) Walp) showed the highest values for FRAP and DPPH assay, respectively. Between tubers, the jícama (Smallanthus sonchifolius (Poepp.) H. Rob.) had the majors values in terms of total phenolic, flavonoid content, and total antioxidant capacity. In terms of total antioxidant capacity, taxo fruits have the highest contribution in terms of total antioxidant capacity, whilst the dendogram shown the occurrence of five distinct groups in which taxo was located in the first largest group. Our data contributing towards gaining better knowledge about the Andean Ecuadorian diet and the composition of Andean food in order to estimate dietary intakes of health-promoting components
    corecore