56 research outputs found
Harmonic publication and citation counting: sharing authorship credit equitably – not equally, geometrically or arithmetically
Bibliometric counting methods need to be validated against perceived notions of authorship credit allocation, and standardized by rejecting methods with poor fit or questionable ethical implications. Harmonic counting meets these concerns by exhibiting a robust fit to previously published empirical data from medicine, psychology and chemistry, and by complying with three basic ethical criteria for the equitable sharing of authorship credit. Harmonic counting can also incorporate additional byline information about equal contribution, or the elevated status of a corresponding last author. By contrast, several previously proposed counting schemes from the bibliometric literature including arithmetic, geometric and fractional counting, do not fit the empirical data as well and do not consistently meet the ethical criteria. In conclusion, harmonic counting would seem to provide unrivalled accuracy, fairness and flexibility to the long overdue task of standardizing bibliometric allocation of publication and citation credit
Harmonic Allocation of Authorship Credit: Source-Level Correction of Bibliometric Bias Assures Accurate Publication and Citation Analysis
Authorship credit for multi-authored scientific publications is routinely allocated either by issuing full publication credit repeatedly to all coauthors, or by dividing one credit equally among all coauthors. The ensuing inflationary and equalizing biases distort derived bibliometric measures of merit by systematically benefiting secondary authors at the expense of primary authors. Here I show how harmonic counting, which allocates credit according to authorship rank and the number of coauthors, provides simultaneous source-level correction for both biases as well as accommodating further decoding of byline information. I also demonstrate large and erratic effects of counting bias on the original h-index, and show how the harmonic version of the h-index provides unbiased bibliometric ranking of scientific merit while retaining the original's essential simplicity, transparency and intended fairness. Harmonic decoding of byline information resolves the conundrum of authorship credit allocation by providing a simple recipe for source-level correction of inflationary and equalizing bias. Harmonic counting could also offer unrivalled accuracy in automated assessments of scientific productivity, impact and achievement
Cytologic features of nipple aspirate fluid using an automated non-invasive collection device: a prospective observational study
BACKGROUND: Detection of cytologic atypia in nipple aspirate fluid (NAF) has been shown to be a predictor of risk for development of breast carcinoma. Manual collection of NAF for cytologic evaluation varies widely in terms of efficacy, ease of use, and patient acceptance. We investigated a new automated device for the non-invasive collection of NAF in the office setting. METHODS: A multi-center prospective observational clinical trial involving asymptomatic women designed to assess fluid production, adequacy, safety and patient acceptance of the HALO NAF Collection System (NeoMatrix, Irvine, CA). Cytologic evaluation of all NAF samples was performed using previously described classification categories. RESULTS: 500 healthy women were successfully enrolled. Thirty-eight percent (190/500) produced fluid and 187 were available for cytologic analysis. Cytologic classification of fluid producers showed 50% (93/187) Category 0 (insufficient cellular material), 38% (71/187) Category I (benign non-hyperplastic ductal epithelial cells), 10% (18/187) Category II (benign hyperplastic ductal epithelial cells), 3% (5/187) Category III (atypical ductal epithelial cells) and none were Category IV (unequivocal malignancy). Overall, 19% of the subjects produced NAF with adequate cellularity and 1% were found to have cytologic atypia. CONCLUSION: The HALO system is a simple, safe, rapid, automated method for standardized collection of NAF which is acceptable to patients. Cytologic assessment of HALO-collected NAF showed the ability to detect benign and pre-neoplastic ductal epithelial cells from asymptomatic volunteers
Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification
The role of cell authentication in biomedical science has received considerable attention, especially within the past decade. This quality control attribute is now beginning to be given the emphasis it deserves by granting agencies and by scientific journals. Short tandem repeat (STR) profiling, one of a few DNA profiling technologies now available, is being proposed for routine identification (authentication) of human cell lines, stem cells, and tissues. The advantage of this technique over methods such as isoenzyme analysis, karyotyping, human leukocyte antigen typing, etc., is that STR profiling can establish identity to the individual level, provided that the appropriate number and types of loci are evaluated. To best employ this technology, a standardized protocol and a data-driven, quality-controlled, and publically searchable database will be necessary. This public STR database (currently under development) will enable investigators to rapidly authenticate human-based cultures to the individual from whom the cells were sourced. Use of similar approaches for non-human animal cells will require developing other suitable loci sets. While implementing STR analysis on a more routine basis should significantly reduce the frequency of cell misidentification, additional technologies may be needed as part of an overall authentication paradigm. For instance, isoenzyme analysis, PCR-based DNA amplification, and sequence-based barcoding methods enable rapid confirmation of a cell line’s species of origin while screening against cross-contaminations, especially when the cells present are not recognized by the species-specific STR method. Karyotyping may also be needed as a supporting tool during establishment of an STR database. Finally, good cell culture practices must always remain a major component of any effort to reduce the frequency of cell misidentification
Nipple aspiration and ductal lavage in women with a germline BRCA1 or BRCA2 mutation
INTRODUCTION: The aim of this study was to collect serial samples of nipple aspirate (NA) and ductal lavage (DL) fluid from women with germline BRCA1/2 mutations in order to create a biorepository for use in identifying biomarkers of breast cancer risk. METHODS: Between March 2003 and February 2005, 52 women with germline BRCA1 or BRCA2 mutations (median age 43 years, range 27 to 65 years) were scheduled for six-monthly NA, DL and venesection. DL was attempted for all NA fluid-yielding (FY) and any non-FY ducts that could be located at each visit. RESULTS: Twenty-seven (52%) women were postmenopausal, predominantly (19/27) from risk reducing bilateral salpingo-oophorectomy (BSO). FY ducts were identified in 60% of all women, 76% of premenopausal women versus 44% of postmenopausal (P = 0.026). Eighty-five percent of women had successful DL. Success was most likely in women with FY ducts (FY 94% versus non-FY 71% (P = 0.049). DL samples were more likely to be cellular if collected from FY ducts (FY 68% versus non-FY 43%; P = 0.037). Total cell counts were associated with FY status (FY median cell count 30,996, range 0 to >1,000,000 versus non-FY median cell count 0, range 0 to 173,577; P = 0.002). Four women (8%) had ducts with severe atypia with or without additional ducts with mild epithelial atypia; seven others had ducts with mild atypia alone (11/52 (21%) in total). Median total cell count was greater from ducts with atypia (105,870, range 1920 to >1,000,000) than those with no atypia (174, 0 to >1,000,000; P ≤ 0.001). CONCLUSION: It is feasible to collect serial NA and DL samples from women at high genetic risk of breast cancer, and we are creating a unique, prospective collection of ductal samples that have the potential to be used for discovery of biomarkers of breast cancer risk and evaluate the ongoing effects of risk reducing BSO. DL cellular atypia was not predictive of a current breast cancer and longer follow up is needed to determine whether atypia is an additional marker of future breast cancer risk in this population already at high genetic risk of breast cancer
The Fourth International Symposium on the Intraductal Approach to Breast Cancer, Santa Barbara, California, 10–13 March 2005
Intraductal approaches encompass procedures and technologies that are designed to access and interrogate the ductal–alveolar systems of the human breast, and include nipple aspiration, ductal lavage, random periareolar fine needle aspiration, and ductoscopy. These approaches are being used to collect and analyze fluids and cells to develop methods for breast cancer detection and risk assessment; to introduce imaging technologies to explore the mammary tree for abnormalities; to administer therapeutic and/or preventive agents directly to the breast tissue; and to explore the biology of the normal mammary gland. The latest research findings in these areas, presented at The 4th International Symposium on the Intraductal Approach to Breast Cancer in 2005, are summarized in this report
Tolerability of breast ductal lavage in women from families at high genetic risk of breast cancer
<p>Abstract</p> <p>Background</p> <p>Ductal lavage (DL) has been proposed as a minimally-invasive, well-tolerated tool for obtaining breast epithelial cells for cytological evaluation of breast cancer risk. We report DL tolerability in <it>BRCA1/2 </it>mutation-positive and -negative women from an IRB-approved research study.</p> <p>Methods</p> <p>165 <it>BRCA1/2 </it>mutation-positive, 26 mutation-negative and 3 mutation unknown women underwent mammography, breast MRI and DL. Psychological well-being and perceptions of pain were obtained before and after DL, and compared with pain experienced during other screening procedures.</p> <p>Results</p> <p>The average <b><it>anticipated </it></b>and <b><it>experienced </it></b>discomfort rating for DL, 47 and 48 (0–100), were significantly higher (<it>p </it>< 0.01) than the <b><it>anticipated </it></b>and <b><it>experienced </it></b>discomfort of mammogram (38 and 34), MRI (36 and 25) or nipple aspiration (42 and 27). Women with greater pre-existing emotional distress experienced more DL-related discomfort than they anticipated. Women reporting DL-related pain as worse than expected were nearly three times more likely to refuse subsequent DL than those reporting it as the same or better than expected. Twenty-five percent of participants refused repeat DL at first annual follow-up.</p> <p>Conclusion</p> <p>DL was anticipated to be and experienced as <b>more </b>uncomfortable than other procedures used in breast cancer screening. Higher underlying psychological distress was associated with decreased DL tolerability.</p
Facile whole mitochondrial genome resequencing from nipple aspirate fluid using MitoChip v2.0
<p>Abstract</p> <p>Background</p> <p>Mutations in the mitochondrial genome (mtgenome) have been associated with many disorders, including breast cancer. Nipple aspirate fluid (NAF) from symptomatic women could potentially serve as a minimally invasive sample for breast cancer screening by detecting somatic mutations in this biofluid. This study is aimed at 1) demonstrating the feasibility of NAF recovery from symptomatic women, 2) examining the feasibility of sequencing the entire mitochondrial genome from NAF samples, 3) cross validation of the Human mitochondrial resequencing array 2.0 (MCv2), and 4) assessing the somatic mtDNA mutation rate in benign breast diseases as a potential tool for monitoring early somatic mutations associated with breast cancer.</p> <p>Methods</p> <p>NAF and blood were obtained from women with symptomatic benign breast conditions, and we successfully assessed the mutation load in the entire mitochondrial genome of 19 of these women. DNA extracts from NAF were sequenced using the mitochondrial resequencing array MCv2 and by capillary electrophoresis (CE) methods as a quality comparison. Sequencing was performed independently at two institutions and the results compared. The germline mtDNA sequence determined using DNA isolated from the patient's blood (control) was compared to the mutations present in cellular mtDNA recovered from patient's NAF.</p> <p>Results</p> <p>From the cohort of 28 women recruited for this study, NAF was successfully recovered from 23 participants (82%). Twenty two (96%) of the women produced fluids from both breasts. Twenty NAF samples and corresponding blood were chosen for this study. Except for one NAF sample, the whole mtgenome was successfully amplified using a single primer pair, or three pairs of overlapping primers. Comparison of MCv2 data from the two institutions demonstrates 99.200% concordance. Moreover, MCv2 data was 99.999% identical to CE sequencing, indicating that MCv2 is a reliable method to rapidly sequence the entire mtgenome. Four NAF samples contained somatic mutations.</p> <p>Conclusion</p> <p>We have demonstrated that NAF is a suitable material for mtDNA sequence analysis using the rapid and reliable MCv2. Somatic mtDNA mutations present in NAF of women with benign breast diseases could potentially be used as risk factors for progression to breast cancer, but this will require a much larger study with clinical follow up.</p
- …