322 research outputs found

    Satellite and ground radiotracking of elk

    Get PDF
    Radiotracking and monitoring of free-living animals in natural environments is providing an effective new technique for acquiring information on biological processes, including animal orientation and navigation. To test the practicability of extending the technique by using satellite systems for tracking animals, a female elk was instrumented with an electronic collar. It contained both the Interrogation Recording Location System (IRLS) transponder and a Craighead-Varney ground-tracking transmitter. The elk was successfully tracked and monitored by satellite during month of April 1970. This was the first time an animal had been tracked by satellite on the surface of the earth

    Electron acceleration by turbulent plasmoid reconnection

    Full text link
    In space and astrophysical plasmas, like in planetary magnetospheres, as that of Mercury,energetic electrons are often found near current sheets (CSs), which hints at electron acceleration by magnetic reconnection. Unfortunately, electron acceleration by reconnection is not well understood, yet. In particular, acceleration by turbulent plasmoid reconnection. We have investigated electron acceleration by turbulent plasmoid reconnection, described by MHD simulations, via test particle calculations. In order to avoid resolving all relevant turbulence scales down to the dissipation scales, a mean-field turbulence model is used to describe the turbulence of sub-grid scales (SGS) and their effects via a turbulent electromotive force (EMF). The mean-field model describes the turbulent EMF as a function of the mean values of current density, vorticity, magnetic field as well as of the energy, cross-helicity and residual helicity of the turbulence. We found that, mainly around X-points of turbulent reconnection, strongly enhanced localized EMFs most efficiently accelerated electrons and caused the formation of power-law spectra. Magnetic-field-aligned EMFs, caused by the turbulence, dominate the electron acceleration process. Scaling the acceleration processes to parameters of the Hermean magnetotail, electron energies up to 60 keV can be reached by turbulent plasmoid reconnection through the thermal plasma.Comment: 2018PhPl...25d2904

    Disorder-induced Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr_{0.9}Ca_{0.1}CuO_2

    Full text link
    We report a comparative study of 63Cu Nuclear Magnetic Resonance spin lattice relaxation rates, T_1^{-1}, on undoped SrCuO_2 and Ca doped Sr_{0.9}Ca_{0.1}CuO_2 spin chain compounds. A temperature independent T_1^{-1} is observed for SrCuO_2 as expected for an S=1/2 Heisenberg chain. Surprisingly, we observe an exponential decrease of T_1^{-1} for T < 90,K in the Ca-doped sample evidencing the opening of a spin gap. The data analysis within the J_1-J_2 Heisenberg model employing density-matrix renormalization group calculations suggests an impurity driven small alternation of the J_2-exchange coupling as a possible cause of the spin gap.Comment: 4 pages, 4 figure

    Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids

    Full text link
    The liquid-gas spinodal and the glass transition define ultimate boundaries beyond which substances cannot exist as (stable or metastable) liquids. The relation between these limits is analyzed {\it via} computer simulations of a model liquid. The results obtained indicate that the liquid - gas spinodal and the glass transition lines intersect at a finite temperature, implying a glass - gas mechanical instability locus at low temperatures. The glass transition lines obtained by thermodynamic and dynamic criteria agree very well with each other.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Non-Fermi-liquid scattering rates and anomalous band dispersion in ferropnictides

    Full text link
    Angle-resolved photoemission spectroscopy (ARPES) is used to study the band dispersion and the quasiparticle scattering rates in two ferropnictides systems. Our ARPES results show linear-in-energy dependent scattering rates which are constant in a wide range of control parameter and which depend on the orbital character of the bands. We demonstrate that the linear energy dependence gives rise to weakly dispersing band with a strong mass enhancement when the band maximum crosses the chemical potential. In the superconducting phase the related small effective Fermi energy favors a Bardeen-Cooper-Schrieffer (BCS)\,\cite{Bardeen1957}-Bose-Einstein (BE)\,\cite{Bose1924} crossover state.Comment: 5 pages, 4 figures Supplement 4 pages, 6 figure

    Thermodynamic and structural aspects of the potential energy surface of simulated water

    Full text link
    Relations between the thermodynamics and dynamics of supercooled liquids approaching a glass transition have been proposed over many years. The potential energy surface of model liquids has been increasingly studied since it provides a connection between the configurational component of the partition function on one hand, and the system dynamics on the other. This connection is most obvious at low temperatures, where the motion of the system can be partitioned into vibrations within a basin of attraction and infrequent inter-basin transitions. In this work, we present a description of the potential energy surface properties of supercooled liquid water. The dynamics of this model has been studied in great details in the last years. Specifically, we locate the minima sampled by the liquid by ``quenches'' from equilibrium configurations generated via molecular dynamics simulations. We calculate the temperature and density dependence of the basin energy, degeneracy, and shape. The temperature dependence of the energy of the minima is qualitatively similar to simple liquids, but has anomalous density dependence. The unusual density dependence is also reflected in the configurational entropy, the thermodynamic measure of degeneracy. Finally, we study the structure of simulated water at the minima, which provides insight on the progressive tetrahedral ordering of the liquid on cooling

    Universal linear-temperature dependence of static magnetic susceptibility in iron-pnictides

    Full text link
    A universal linear-temperature dependence of the uniform magnetic susceptibility has been observed in the nonmagnetic normal state of iron-pnictides. This non-Pauli and non-Curie-Weiss-like paramagnetic behavior cannot be understood within a pure itinerant picture. We argue that it results from the existence of a wide antiferromagnetic fluctuation window in which the local spin-density-wave correlations exist but the global directional order has not been established yet.Comment: 4 pages, 2 figure
    corecore