336 research outputs found

    Heat balance of the Earth

    Get PDF
    Results of improved calculations of the heat balance components of Earth's surface are reported for yearly average conditions. The technique used to determine the heat-balance components from land- and sea-based actinometric observations as well as from satellite data on the radiation balance of the Earth-atmosphere system is described, with special attention given to short-wavelength solar radiation on the continents, effective radiation from the land surface, the radiation balance of the ocean surface, heat expended by both evaporation from the ocean surface, and turbulent heat transfer between the ocean surface and the atmosphere. World maps of heat-balance components show yearly average values of total radiation, radiation balance, heat expended by evaporation, the turbulent heat flow between Earth's surface and atmosphere, and heat transfer between the ocean surface and underlying waters. The global surface heat balance is estimated along with global values of the various components and the heat-balance components for different latitude zones

    Habitable Climates

    Full text link
    According to the standard liquid-water definition, the Earth is only partially habitable. We reconsider planetary habitability in the framework of energy-balance models, the simplest seasonal models in physical climatology, to assess the spatial and temporal habitability of Earth-like planets. We quantify the degree of climatic habitability of our models with several metrics of fractional habitability. Previous evaluations of habitable zones may have omitted important climatic conditions by focusing on close Solar System analogies. For example, we find that model pseudo-Earths with different rotation rates or different land-ocean fractions have fractional habitabilities that differ significantly from that of the Earth itself. Furthermore, the stability of a planet's climate against albedo-feedback snowball events strongly impacts its habitability. Therefore, issues of climate dynamics may be central in assessing the habitability of discovered terrestrial exoplanets, especially if astronomical forcing conditions are different from the moderate Solar System cases.Comment: Accepted by ApJ. Several references added. 41 pages, 11 figures, 2 table

    The stochastic resonance mechanism in the Aerosol Index dynamics

    Get PDF
    We consider Aerosol Index (AI) time-series extracted from TOMS archive for an area covering Italy (718oE;3647oN)(7-18^o E ; 36-47^o N). The missing of convergence in estimating the embedding dimension of the system and the inability of the Independent Component Analysis (ICA) in separating the fluctuations from deterministic component of the signals are evidences of an intrinsic link between the periodic behavior of AI and its fluctuations. We prove that these time series are well described by a stochastic dynamical model. Moreover, the principal peak in the power spectrum of these signals can be explained whereby a stochastic resonance, linking variable external factors, such as Sun-Earth radiation budget and local insolation, and fluctuations on smaller spatial and temporal scale due to internal weather and antrophic components

    Internal Waves Influence the Thermal and Nutrient Environment on a Shallow Coral Reef

    Get PDF
    Internal waves can influence water properties in coastal ecosystems through the shoreward transport and mixing of subthermocline water into the nearshore region. In June 2014, a field experiment was conducted at Dongsha Atoll in the northern South China Sea to study the impact of internal waves on a coral reef. Instrumentation included a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 4‐km cross‐reef section from the lagoon to 50‐m depth on the fore reef. Our observations show that during summer, internal waves shoaling on the shallow atoll regularly transport cold, nutrient‐rich water shoreward, altering near‐surface water properties on the fore reef. This water is transported shoreward of the reef crest by tides, breaking surface waves and wind‐driven flow, where it significantly alters the water temperature and nutrient concentrations on the reef flat. We find that without internal wave forcing on the fore reef, temperatures on the reef flat could be up to 2.0°C ± 0.2°C warmer. Additionally, we estimate a change in degree heating weeks of 0.7°C‐weeks warmer without internal waves, which significantly increases the probability of a more severe bleaching event occurring at Dongsha Atoll. Furthermore, using nutrient samples collected on the fore reef during the study, we estimated that instantaneous onshore nitrate flux is about four‐fold higher with internal waves than without internal waves. This work highlights the importance of internal waves as a physical mechanism shaping the nearshore environment, and likely supporting resilience of the reef

    The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Get PDF
    Soil moisture supply and atmospheric demand for water independently limit—and profoundly affect—vegetation productivity and water use during periods of hydrologic stress1, 2, 3, 4. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models5, 6, 7. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink8, 9. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions

    Global instability in the Ghil--Sellers model

    Get PDF
    The Ghil--Sellers model, a diffusive one-dimensional energy balance model of Earth's climate, features---for a considerable range of the parameter descriptive of the intensity of the incoming radiation---two stable climate states, where the bistability results from the celebrated ice-albedo feedback. The warm state is qualitatively similar to the present climate, while the cold state corresponds to snowball conditions. Additionally, in the region of bistability, one can find unstable climate states. We find such unstable states by applying for the first time in a geophysical context the so-called edge tracking method, which has been used for studying multiple coexisting states in shear flows. This method has a great potential for studying the global instabilities in multistable systems, and for providing crucial information on the possibility of transitions when forcing is present. We examine robustness, efficiency, and accuracy properties of the edge tracking algorithm. We find that the procedure is the most efficient when taking a single bisection per cycle. Due to the strong diffusivity of the system, the transient dynamics, is approximately confined to the heteroclininc trajectory, connecting the fixed unstable and stable states, after relatively short transient times. Such a constraint dictates a functional relationship between observables. We characterize such a relationship between the global average temperature and a descriptor of nonequilibrium thermodynamics, the large scale temperature gradient between low and high latitudes. We find that a maximum of the temperature gradient is realized at the same value of the average temperature, about 270 K, largely independent of the strength of incoming solar radiation. Due to this maximum, a transient increase and nonmonotonic evolution of the temperature gradient is possible and not untypical. We also examine the structural properties of the system defined by bifurcation diagrams describing the equilibria depending on a system parameter of interest, here the solar strength. We construct new bifurcation diagrams in terms of quantities relevant for describing thermodynamic properties such as the temperature gradient and the material entropy production due to heat transport. We compare our results for the energy balance model to results for the intermediate complexity general circulation model the Planet Simulator and find an interesting qualitative agreement

    Introduction to the special issue on the statistical mechanics of climate

    Get PDF
    We introduce the special issue on the Statistical Mechanics of Climate by presenting an informal discussion of some theoretical aspects of climate dynamics that make it a topic of great interest for mathematicians and theoretical physicists. In particular, we briefly discuss its nonequilibrium and multiscale properties, the relationship between natural climate variability and climate change, the different regimes of climate response to perturbations, and critical transitions
    corecore