8 research outputs found

    The Effect of Temperature and Addition of Cao to Hydrogen Production From Pattukku Coal Char Gasification

    Full text link
    Hydrogen is an environment-friendly fuel and has a high caloric value. Hydrogen as a molecule is not found in nature, but it is found in compounds with other elements. Besides catalytic steam reforming of natural gas, hydrogen can also be produced from thermochemical processes such as combustion, pyrolysis, and gasification. The process of gasification using steam as gasification agent can increase the yield of H2 in the gas products. The objectives of this research are to study the influence of temperature and the addition of CaO on H2 production. This research was conducted in an up-draft reactor for 60 minutes with three different temperatures; i.e. 600, 700, and 800 oC and ratio of CaO:char of 0 and 0.5. Based on this study, the rise of temperature will improve the yield of H2 and CO2 in the gas products. At gasification temperature of 800 oC, the yield of H2 and CO2 is maximum. Moreover, the addition of CaO can improve the char conversion and reduce the concentration of CO2 in the gas products

    THE KINETICS OF CaO ASSISTED PATTUKKU CHARCOAL STEAM GASIFICATION

    Get PDF
    Abstract   Coal is a solid fuel that can be converted into syngas through gasification process. To obtain optimum gasification process design and operation, in-depth understanding of the influential parameters is required. This study aims to investigate the effect of temperature on the gasification process and to obtain its kinetics parameters. The study was carried out in a tubular reactor equipped with a heater and a condenser. Steam was used as gasifying agent, while CaO was employed as a CO2 adsorbent. The charcoal from coal was subjected to gasification at temperatures of 600°C, 700°C, and 800°C. The ratio of charcoal and CaO was 1:1. The gasification process lasted for 60 minutes with gas sample was taken every 15 minutes for composition analysis. The results showed that a temperature increase of 100°C caused a proportional increase of conversion of about 75% higher. The value of activation energy (Ea) and exponential factor (ko) were 46.645kJ/mole and 328.3894/min, respectively. For mass transfer parameters, values of activation energy for surface diffusion (Es) and surface diffusivity factor (as) were 81.126 kJ/mole and 0.138/min, respectively.   Keywords: gasification; mathematical model; Pattukku coal char; steam; Thin Reaction Zone Mode

    Pengaruh Penambahan Asam Organik terhadap Perubahan Kualitas Ekstrak Daun Noja (Peristrophe Bivalvis) Karena Terjadinya Reaksi Oksidasi

    Full text link
    Noja (Peristrophe bivalvis) adalah tumbuhan sumber pewarna alami yang potensial dikembangkan di Indonesia. Ekstrak daun noja dapat mengalami kerusakan karena teroksidasi selama penyimpanan. Penambahan asam tanat, asam tartarat, dan asam sitrat diharapkan dapat menghambat terjadinya hal tersebut. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan asam tanat, asam tartarat, dan asam sitrat terhadap kecepatan kerusakan ekstrak daun noja akibat oksidasi. Indikator kerusakandinyatakan sebagai Perubahan absorbansi ekstrak terhadap waktu. Pengamatan pada penelitian ini dipercepat dengan menambahkan hidrogen peroksida. Asam tanat, asam tartarat, dan asam sitrat pada berbagai variasi konsentrasi ditambahkan ke dalam larutan ekstrak daun noja, diikuti dengan penambahan 1% (v/v) hidrogen peroksida 30%. Pengukuran absorbansi dilakukan setiap 30 menit. Hasil yang diperoleh menunjukkan bahwa penambahan asam tanat, asam tartarat, dan asam sitrat, memberikan kenaikan nilai absorbansi larutan terhadap waktu sebesar 2 - 3%; 20 - 26% dan 23 - 26%, sedangkan tanpa penambahan asam (blangko) memberikan kenaikan sebesar 24%. Hasil tersebut menunjukan bahwa penambahan asam tanat dan asam tartarat dapat menghambat reaksi oksidasi

    Eksplorasi Produksi Biohidrogen dari Fraksi Organik Sampah Rumah Tangga dengan Penambahan Zat Aditif N,P dan K

    Full text link
    Fraksi organik sampah rumah tangga adalah salah satu potensi sumber energi terbarukan melalui konversi menjadi metana dan hidrogen. Dengan pengaturan pH yang tepat, proses anaerob dapat menghasilkan metana atau hidrogen. Penelitian ini bertujuan mempelajari peningkatan produksi biohidrogen dari fraksi organik sampah rumah tangga dengan penambahan zat aditif berupa pupuk NPK. Pupuk NPK berfungsi sebagai penyempurnaan nutrisi bagi mikroba anaerob. Ketersediaan bahan organik pada substrat untuk mikroba anaerob direpresentasikan dengan VS (volatile solid) dan inokulum yang digunakan berupa kotoran sapi. Pupuk NPK ditambahkan ke dalam 440 mL substrat dengan variasi dosis 5,840 g (R1); 7,280 g (R2); dan 8,745 g (R3). Penelitian ini dijalankan dalam reaktor batch selama 30 hari pada suhu ruangan. Analisis yang dilakukan mencakup analisis kandungan gas menggunakan GC (Gas Chromatography) serta analisis sampel campuran yang meliputi VS (volatile solid), TS (total solid), dan pH. Hasil penelitan menunjukkan bahwa penambahan zat aditif berupa pupuk NPK dengan jumlah terukur berpengaruh positif dalam meningkatkan produksi gas hidrogen dari sampah organik rumah tangga. Selain itu, nilai pH merupakan faktor yang penting dalam proses anaerob ini. Pada pH 4 produk gas yang dihasilkan didominasi oleh H2 dan CO2. Rasio C/N yang menghasikan gas terbanyak adalah 20:1

    Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues

    No full text
    Today’s needs of energy are yet globally dominated by fossil energy sources, causing the depletion of non-renewable energy. Alternatively, a potential substitute is the energy of biomass. Spirulina platensis (SP) is a microalgae biomass which, if extracted, will produce solid waste called Spirulina platensis residue (SPR). This research explores the pyrolysis product, produced within the range of 300 – 600 ºC, from the pyrolysis of SP and SPR using fixed bed reactors. The influence of temperature on pyrolysis product’s yield and characteristics are investigated by using mass balance method and gas chromatography – mass spectrometry (GC-MS) technique, respectively. The results from mass balance method present an optimum pyrolysis temperature of 550 ºC to obtain the desired liquid product of bio-oil, presenting the percentage of 34.59 wt.% for SP and 33.44 wt.% for SPR case. Additionally, with the increasing temperature, the char yield decreases for about 30 wt.% and the yield of gas seems to sharp increase from 550 to 600 ºC. These tendencies are both applied for SP and SPR source pyrolysis product. Interestingly, the benefit use as fossil fuel substitute might be derived, thanks to high HHV at the bio-oil product (32.04 MJ/kg for SP and 25.70 MJ/kg for SPR) and also at the char product with of 18.85-26.12 MJ/kg for both cases. The additional benefit come from the high content of C in its char product (50.31 wt.% for SPR and 45.26 wt.% for SP) that might be able to be used as an adsorbent, soil softener or other uses in the pharmaceutical field. ©2019. CBIORE-IJRED. All rights reserve

    Production of edible fungal (Rhizopus delemar CBS 145940) biomass from organosolv-pretreated oil palm empty fruit bunch (OPEFB) in submerged fermentation

    Get PDF
    Accumulation of oil palm empty fruit bunches (OPEFB) from palm oil industry poses challenges for the disposal process, which leads to environmental damage. For this reason, valorization of OPEFB fractions to produce edible fungal biomass was carried out in this research. The fungus was Rhizopus delemar CBS 145940, which is an edible fungus, Indonesian indigenous, and is favorable for the production of several end products. Organosolv pretreatment was first conducted on OPEFB using ethanol (50%) as the solvent. Enzymatic hydrolysis was then performed using Cellic® Ctec3 on the pretreated-OPEFB fractions. Hydrolyzates from cellulose-rich fraction, slurry (a mixture of cellulose-rich fraction and hemicellulose-rich fraction), and hemicellulose-rich fraction were used as the cultivation media for fungal growth. The corresponding yield of fungal biomass from each medium was 0.62 ± 0.07 g/g glucose; 0.41 ± 0.02; and 0.61 ± 0.13 g/g fermentable sugars, respectively. These results showed that Rhizopus delemar CBS 145940 could be grown in all the hydrolyzates from the OPEFB fractions. Nevertheless, in order to obtain higher fungal biomass, supplementation of nutrition was needed. © 2020 Institute of Physics Publishing
    corecore