5,302 research outputs found

    Balancing Efficiency, Equity, and Voice in Workplace Resolution Procedures

    Get PDF
    Systems for resolving workplace disputes are very important to workers and firms, and have been the subject of much debate. In the United States, traditional unionized grievance procedures, emerging nonunion dispute resolution systems, and the court-based system for resolving employment law disputes have all been criticized. Much of the existing debate on workplace dispute resolution, however, has been atheoretical, with a focus on techniques of dispute resolution rather than the goals of the system. What is missing from the debate are fundamental standards for comparing and evaluating dispute resolutions systems. In this paper, we develop efficiency, equity, and voice as these standards. Unionized, nonunion, and employment law procedures are then evaluated against these three standards.

    Ambiguities of neutrino(antineutrino) scattering on the nucleon due to the uncertainties of relevant strangeness form factors

    Full text link
    Strange quark contributions to neutrino(antineutrino) scattering are investigated on the nucleon level in the quasi-elastic region. The incident energy range between 500 MeV and 1.0 GeV is used for the scattering. All of the physical observable by the scattering are investigated within available experimental and theoretical results for the strangeness form factors of the nucleon. In specific, a newly combined data of parity violating electron scattering and neutrino scattering is exploited. Feasible quantities to be explored for the strangeness contents are discussed for the application to neutrino-nucleus scattering.Comment: 17 pages, 7 figures, submit to J. Phys.

    Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    Get PDF
    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway

    miR-9 Acts as an OncomiR in Prostate Cancer through Multiple Pathways That Drive Tumour Progression and Metastasis

    Get PDF
    Identification of dysregulated microRNAs (miRNAs) in prostate cancer is critical not only for diagnosis, but also differentiation between the aggressive and indolent forms of the disease. miR-9 was identified as an oncomiR through both miRNA panel RT-qPCR as well as high-throughput sequencing analysis of the human P69 prostate cell line as compared to its highly tumorigenic and metastatic subline M12, and found to be consistently upregulated in other prostate cell lines including DU-145 and PC3. While miR-9 has been characterized as dysregulated either as an oncomiR or tumour suppressor in a variety of other cancers including breast, ovarian, and nasopharyngeal carcinomas, it has not been previously evaluated and proven as an oncomiR in prostate cancer. miR-9 was confirmed an oncomiR when found to be overexpressed in tumour tissue as compared to adjacent benign glandular epithelium through laser-capture microdissection of radical prostatectomy biopsies. Inhibition of miR-9 resulted in reduced migratory and invasive potential of the M12 cell line, and reduced tumour growth and metastases in male athymic nude mice. Analysis showed that miR-9 targets e-cadherin and suppressor of cytokine signalling 5 (SOCS5), but not NF-ĸB mRNA. Expression of these proteins was shown to be affected by modulation in expression of miR-9

    Extraction of the Axial Nucleon Form Factor from Neutrino Experiments on Deuterium

    Full text link
    We present new parameterizations of vector and axial nucleon form factors. We maintain an excellent descriptions of the form factors at low momentum transfers (Q2Q^2), where the spatial structure of the nucleon is important, and use the Nachtman scaling variable ξ\xi to relate elastic and inelastic form factors and impose quark-hadron duality constraints at high Q2Q^2 where the quark structure dominates. We use the new vector form factors to re-extract updated values of the axial form factor from \numu experiments on deuterium. We obtain an updated world average value from \numud, \numubarH and pion electroproduction experiments of MAM_{A} = 1.014±0.014GeV/c21.014 \pm 0.014 GeV/c^2. Our parameterizations are useful in modeling ν\nu interactions at low energies (e.g. for \numu oscillations experiments). The predictions for high Q2Q^2 can be tested in the next generation electron and \numu scattering experiments.Comment: Presented by A. Bodek at the European Physical Society Meeting, EPS2007, Manchester, England, July 2007, 4 pages, 2 figure

    Socioeconomic inequalities in outcome of pregnancy and neonatal mortality associated with congenital anomalies: population based study

    Get PDF
    Objectives To investigate socioeconomic inequalities in outcome of pregnancy and neonatal mortality associated with congenital anomalies

    MĂĽller cell activation, proliferation and migration following laser injury.

    Get PDF
    PurposeMĂĽller cells are well known for their critical role in normal retinal structure and function, but their reaction to retinal injury and subsequent role in retinal remodeling is less well characterized. In this study we used a mouse model of retinal laser photocoagulation to examine injury-induced MĂĽller glial reaction, and determine how this reaction was related to injury-induced retinal regeneration and cellular repopulation.MethodsExperiments were performed on 3-4-week-old C57BL/6 mice. Retinal laser photocoagulation was used to induce small, circumscribed injuries; these were principally confined to the outer nuclear layer, and surrounded by apparently healthy retinal tissue. Western blotting and immunohistochemical analyses were used to determine the level and location of protein expression. Live cell imaging of green fluorescent protein (GFP)-infected MĂĽller cells (AAV-GFAP-GFP) were used to identify the rate and location of retinal MĂĽller cell nuclear migration.ResultsUpon injury, MĂĽller cells directly at the burn site become reactive, as evidenced by increased expression of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and nestin. These reactive cells re-enter the cell cycle as shown by expression of the markers Cyclin D1 and D3, and their nuclei begin to migrate toward the injury site at a rate of approximately 12 microm/hr. However, unlike other reports, evidence for MĂĽller cell transdifferentiation was not identified in this model.ConclusionsRetinal laser photocoagulation is capable of stimulating a significant glial reaction, marked by activation of cell cycle progression and retinal reorganization, but is not capable of stimulating cellular transdifferentiation or neurogenesis

    Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Get PDF
    A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index) and sensor response are discussed

    Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint

    Get PDF
    Dna2 is a dual polarity exo/endonuclease, and 5' to 3' DNA helicase involved in Okazaki Fragment Processing (OFP) and Double-Strand Break (DSB) Repair. In yeast, DNA2 is an essential gene, as expected for a DNA replication protein. Suppression of the lethality of dna2Δ mutants has been found to occur by two mechanisms: overexpression of RAD27^(scFEN1), encoding a 5' to 3' exo/endo nuclease that processes Okazaki fragments (OFs) for ligation, or deletion of PIF1, a 5' to 3' helicase involved in mitochondrial recombination, telomerase inhibition and OFP. Mapping of a novel, spontaneously arising suppressor of dna2Δ now reveals that mutation of rad9 and double mutation of rad9 mrc1 can also suppress the lethality of dna2Δ mutants. Interaction of dna2Δ and DNA damage checkpoint mutations provides insight as to why dna2Δ is lethal but rad27Δ is not, even though evidence shows that Rad27^(ScFEN1) processes most of the Okazaki fragments, while Dna2 processes only a subset
    • …
    corecore