8 research outputs found

    A re-analysis of NH4+ sorption on biochar: Have expectations been too high?

    Get PDF
    Sorption of nutrients such as NH4+ is often quoted as a critical property of biochar, explaining its value as a soil amendment and a filter material. However, published values for NH4+ sorption to biochar vary by more than 3 orders of magnitude, without consensus as to the source of this variability. This lack of understanding greatly limits our ability to use quantitative sorption measurements towards product design. Here, our objective was to conduct a quantitative analysis of the sources of variability, and infer which biochar traits are more favourable to high sorption capacity. To do so, we conducted a standardized remodelling exercise of published batch sorption studies using Langmuir sorption isotherm. We excluded studies presenting datasets that either could not be reconciled with the standard Langmuir sorption isotherm or generated clear outliers. Our analysis indicates that the magnitude of sorption capacity of unmodified biochar for NH4+ is lower than previously reported, with a median of 4.2 mg NH4+ g−1 and a maximum reported sorption capacity of 22.8 mg NH4+ g−1. Activation resulted in a significant relative improvement in sorption capacity, but absolute improvements remain modest, with a maximum reported sorption of 27.56 mg NH4+ g−1 for an activated biochar. Methodology appeared to substantially impact sorption estimates, especially practices such as pH control of batch sorption solution and ash removal. Our results highlight some significant challenges in the quantification of NH4+ sorption by biochar and our curated data set provides a potentially valuable scale against which future estimates can be assessed.publishedVersio

    Muligheter for en mer effektiv utnytelse av planterestene - Agronomi som sikrer god jordhelse, avling og plantehelse i korn

    Get PDF
    Tap av organisk materiale, jordpakking og erosjon truer jordhelsa pÄ kornareal. Problemer med dette vil antagelig Þke i et vÄtere klima og medfÞre store kostnader for bÄde gÄrdbrukere og samfunn. Fremover mÄ vi passe pÄ Ä stabilisere erosjonsutsatt jordoverflate og sikre en god infiltrasjon av nedbÞr. PÄ kornareal er lav Ärlig tilfÞrsel av karbon en begrensende faktor for aggregering og stabilisering, men dette kan forbedres ved Ä beholde halmen pÄ jordet eller bruke en tilpasset fangvekststrategi. En bÞr trolig skjevfordele tilfÞrt organisk materiale mer mot jordas overflate og dermed stimulere mikrobiell aktivitet i jordas toppsjikt. Da mÄ en minimere jordarbeidingsintensiteten. Slik redusert jordarbeiding fÞrer ogsÄ til utvikling av et kontinuerlig poresystem nedover i profilet som kan Þke infiltrasjonen etter kraftige nedbÞrsepisoder og dermed bidra til Ä dempe flomtopper. Store mengder plantemateriale ved jordoverflaten gir imidlertid ogsÄ noen utfordringer. Det trengs Þkt kunnskap om ugrasbekjempelse, spesielt i et scenario der glyfosat blir forbudt. Minimal jordarbeiding med planterester pÄ jordoverflaten kan ogsÄ Þke angrep av sopp. Integrerte plantevernstrategier bÞr identifisere arter og sorter av matplanter og fangvekster som kan bidra til Ä begrense forekomst av patogener i jord og halmrester. Bedre jordhelse pÄ kornareal er en tverrfaglig utfordring og krever en varig endring av dagens dyrkingspraksis.Muligheter for en mer effektiv utnytelse av planterestene - Agronomi som sikrer god jordhelse, avling og plantehelse i kornpublishedVersio

    Muligheter og utfordringer for Ăžkt karbonbinding i jordbruksjord

    Get PDF
    En Þkning i karbonlagring i landbruksjord er angitt som et viktig klimatiltak bÄde internasjonalt og i Norge. Tiltaket er godt begrunnet: Jorden inneholder to til tre ganger sÄ mye karbon som atmosfÊren, noe som innebÊrer at relative smÄ endringer i innhold av karbon i jord kan ha betydelige effekter pÄ CO2-innholdet i atmosfÊren og det globale klimaet. Det er godt dokumentert at intensive jordbruksmetoder har fÞrt til en reduksjon i jordkarbon og derfor Þnskes det en reversering av denne trenden (dvs. Þkt karbonbinding i jord), som tiltak bÄde for klima og matproduksjon. I denne rapporten er det gjort vurderinger av hvordan dette kan gjÞres i Norge og hvilken klimaeffekt som kan oppnÄs...publishedVersio

    Co-composting of digestate and garden waste with biochar: effect on greenhouse gas production and fertilizer value of the matured compost

    Get PDF
    Biogas digestate is a nitrogen (N) rich waste product that has potential for application to soil as a fertilizer. Composting of digestate is recognized as an effective step to reduce potentially negative consequences of digestate application to soils. However, the structure of the digestate and the high N content can hinder effective composting. Biochar, which can be produced through the pyrolysis of waste biomass, has shown the potential to improve compost structure and increase N retention in soils. We studied how a high-temperature wood biochar affects the composting process, including greenhouse gas emissions, and the fertilizer value of the compost product including nutrient content, leachability and plant growth. The high Biochar dose (17% w/w) had a significantly positive effect on the maximum temperature (5°C increase vs. no biochar) and appeared to improve temperature stability during composting with less variability between replicates. Biochar addition reduced cumulative N2O emission by 65–70%, but had no significant effect on CO2 and CH4 emission. Biochar did not contribute to greater retention of nitrogen (N) contained in the digestate, but had a dilution effect on both N content and mineral nutrients. Fertilization with compost enhanced plant growth and nutrient retention in soil compared to mineral fertilization (NPK), but biochar had no additional effects on these parameters. Our results show that biochar improves the composting of digestate with no subsequent negative effects on plants.publishedVersio

    Co-composting of digestate and garden waste with biochar: effect on greenhouse gas production and fertilizer value of the matured compost

    Get PDF
    Biogas digestate is a nitrogen (N) rich waste product that has potential for application to soil as a fertilizer. Composting of digestate is recognized as an effective step to reduce potentially negative consequences of digestate application to soils. However, the structure of the digestate and the high N content can hinder effective composting. Biochar, which can be produced through the pyrolysis of waste biomass, has shown the potential to improve compost structure and increase N retention in soils. We studied how a high-temperature wood biochar affects the composting process, including greenhouse gas emissions, and the fertilizer value of the compost product including nutrient content, leachability and plant growth. The high Biochar dose (17% w/w) had a significantly positive effect on the maximum temperature (5°C increase vs. no biochar) and appeared to improve temperature stability during composting with less variability between replicates. Biochar addition reduced cumulative N2O emission by 65–70%, but had no significant effect on CO2 and CH4 emission. Biochar did not contribute to greater retention of nitrogen (N) contained in the digestate, but had a dilution effect on both N content and mineral nutrients. Fertilization with compost enhanced plant growth and nutrient retention in soil compared to mineral fertilization (NPK), but biochar had no additional effects on these parameters. Our results show that biochar improves the composting of digestate with no subsequent negative effects on plants

    A re-analysis of NH4+ sorption on biochar: Have expectations been too high?

    No full text
    Sorption of nutrients such as NH4+ is often quoted as a critical property of biochar, explaining its value as a soil amendment and a filter material. However, published values for NH4+ sorption to biochar vary by more than 3 orders of magnitude, without consensus as to the source of this variability. This lack of understanding greatly limits our ability to use quantitative sorption measurements towards product design. Here, our objective was to conduct a quantitative analysis of the sources of variability, and infer which biochar traits are more favourable to high sorption capacity. To do so, we conducted a standardized remodelling exercise of published batch sorption studies using Langmuir sorption isotherm. We excluded studies presenting datasets that either could not be reconciled with the standard Langmuir sorption isotherm or generated clear outliers. Our analysis indicates that the magnitude of sorption capacity of unmodified biochar for NH4+ is lower than previously reported, with a median of 4.2 mg NH4+ g−1 and a maximum reported sorption capacity of 22.8 mg NH4+ g−1. Activation resulted in a significant relative improvement in sorption capacity, but absolute improvements remain modest, with a maximum reported sorption of 27.56 mg NH4+ g−1 for an activated biochar. Methodology appeared to substantially impact sorption estimates, especially practices such as pH control of batch sorption solution and ash removal. Our results highlight some significant challenges in the quantification of NH4+ sorption by biochar and our curated data set provides a potentially valuable scale against which future estimates can be assessed

    Muligheter og utfordringer for Ăžkt karbonbinding i jordbruksjord

    Get PDF
    En Þkning i karbonlagring i landbruksjord er angitt som et viktig klimatiltak bÄde internasjonalt og i Norge. Tiltaket er godt begrunnet: Jorden inneholder to til tre ganger sÄ mye karbon som atmosfÊren, noe som innebÊrer at relative smÄ endringer i innhold av karbon i jord kan ha betydelige effekter pÄ CO2-innholdet i atmosfÊren og det globale klimaet. Det er godt dokumentert at intensive jordbruksmetoder har fÞrt til en reduksjon i jordkarbon og derfor Þnskes det en reversering av denne trenden (dvs. Þkt karbonbinding i jord), som tiltak bÄde for klima og matproduksjon. I denne rapporten er det gjort vurderinger av hvordan dette kan gjÞres i Norge og hvilken klimaeffekt som kan oppnÄs...publishedVersio

    Muligheter og utfordringer for Ăžkt karbonbinding i jordbruksjord

    No full text
    En Þkning i karbonlagring i landbruksjord er angitt som et viktig klimatiltak bÄde internasjonalt og i Norge. Tiltaket er godt begrunnet: Jorden inneholder to til tre ganger sÄ mye karbon som atmosfÊren, noe som innebÊrer at relative smÄ endringer i innhold av karbon i jord kan ha betydelige effekter pÄ CO2-innholdet i atmosfÊren og det globale klimaet. Det er godt dokumentert at intensive jordbruksmetoder har fÞrt til en reduksjon i jordkarbon og derfor Þnskes det en reversering av denne trenden (dvs. Þkt karbonbinding i jord), som tiltak bÄde for klima og matproduksjon. I denne rapporten er det gjort vurderinger av hvordan dette kan gjÞres i Norge og hvilken klimaeffekt som kan oppnÄs..
    corecore