37 research outputs found

    Tardigrades living on a sub-arctic glacier in Alaska

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OB] Polar Biology, Wed. 4 Dec. / 3F Multipurpose conference room, National Institute of Polar Researc

    Tardigrades and oribatid mites in bryophytes from geothermally active lava fields (Krafla, Iceland) and the description of Pilatobius islandicus sp. nov. (Eutardigrada)

    Get PDF
    In polar regions, apart from tundra and glaciers, geothermally active areas with elevated temperatures are important elements of ecosystems. One such geothermally active region characterized by mosaic ecosystems and vast areas covered by recent lava fields is Iceland. The aim of our study was to explore the diversity of invertebrates inhabiting geothermally active lava fields in the Krafla area (Iceland). Eight bryophyte samples were collected from a warm surface, mainly from the steaming areas. We have found Nematoda, Rotifera, Tardigrada and Oribatida in the samples. Habitat analysis demonstrated there to be 12 bryophyte species (five liverworts and seven mosses). The diversity of bryophytes in a single sample ranged from one to six species. The most common bryophyte was Racomitrium lanuginosum (Hedw.) Brid. Four species of tardigrades were found, including one that was new. Pilatobius islandicus sp. nov. is described herein by morphological, morphometric and molecular approaches (COI, 28S rRNA, 18S rRNA). Oribatida mites were identified as two species (Malaconothrus monodactylus (Michael, 1888) and Camisia foveolata Hammer, 1955). The average density of invertebrates was 13.1 ind./g with a maximum of 40.8 ind./g calculated per dry material. The tardigrades found in our study belonged to herbivores, microbivores and omnivores, whereas the mites belonged to saprophages, which indicates complex trophic networks in geothermally active lava fields

    Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier

    Get PDF
    We investigated the Forni Glacier and the surrounding area in the Alps in terms of habitat preferences, densities, dispersal and desiccation tolerance of glacier tardigrades, which are one of the most common faunal representatives and top consumers in supraglacial ecosystems. To do so, we sampled supraglacial environments (cryoconite holes, debris from ice surface, dirt cones and moraine, mosses from supraglacial stones) and non-glacial habitats (mosses, freshwater sediments and algae), and we installed air traps on the glacier and the nearby area. We found that cryoconite holes on the Forni Glacier are exclusively dominated by one metazoan group of tardigrades, representing one species, Hypsibius klebelsbergi (identified by morphological and molecular approaches). Tardigrades were found in 100% of cryoconite holes and wet supraglacial sediment samples and reached up to 172 ind./ml. Additionally, we found glacier tardigrades in debris from dirt cones and sparsely in supraglacial mosses. Glacier tardigrades were absent from freshwater and terrestrial samples collected from non-glacial habitats. Despite the fact that H. klebelsbergi is a typical aquatic species, we showed it withstands desiccation in sediments, but in low temperatures only. Treatments conducted in higher temperatures and water only showed low or no recovery. We suspect successful dispersal with wind might have taken place only when tardigrades desiccated in sediments and were passively transported by cold wind. Limited ability to withstand high temperatures and desiccation may be potential barriers preventing glacier tardigrades inhabiting new, even apparently suitable high mountain water bodies like temporary rock pools

    An integrative redescription of the nominal taxon for the Mesobiotus harmsworthi group (Tardigrada: Macrobiotidae) leads to descriptions of two new Mesobiotus species from Arctic

    Get PDF
    The Mesobiotus harmsworthi group has a global distribution, with localities in polar, temperate and tropical zones. Since the first species of the harmsworthi group was described in the beginning of the 20^{th} century, tens of new species within the group were found and named. However, the diagnosis of the nominal Mesobiotus harmsworthi is insufficient and enigmatic, thus it can be is a serious obstacle in solving the taxonomy of this group. Here, we integratively redescribe the nominal species for the genus Mesobiotus, i.e., Mesobiotus harmsworthi and clarify taxonomic statuses of the two subspecies: M. harmsworthi harmsworthi and M. harmsworthi obscurus that have been recognised as distinct taxa for more than three decades. Traditionally, egg chorion in M. harmsworthi was considered almost smooth and without any traces of areolation, however here we report many misunderstandings that accumulated across decades and we show that, in fact, the chorion in this species exhibits a partially developed areolation. We present an integrative (morphological, morphometric and molecular) diagnosis of the nominal taxon and we confirm that it differs from other species of the harmsworthi group by morphological characters of both animals and eggs. Additionally, we describe two new species of the genus Mesobiotus: M. skorackii sp. nov. from the Kyrgyz Republic (using classical morphological description) and M. occultatus sp. nov. from Svalbard Archipelago (by means of integrative taxonomy). Finally, we also provide the first genetic phylogeny of the genus Mesobiotus based on COI sequences which, together with molecular species delimitation, independently confirms the validity of the analysed taxa

    Fine-scale spatial heterogeneity of invertebrates within cryoconite holes

    Get PDF
    Cryoconite holes (water-filled reservoirs) are considered ecologically simple ecosystems but represent biological hotspots of biodiversity on glaciers. In order to check for fine-scale spatial distribution of metazoans on the bottom of the holes, in this study, we analysed three groups of grazing invertebrates as a model: tardigrades, rotifers, and mites. We addressed differences within cryoconite holes comparing the distribution of invertebrates within and between separate holes and between glaciers at a worldwide scale. We divided each cryoconite hole into three sampling zones (established in relation to water flow on a glacier) and collected nine subsamples within cryoconite holes on glaciers in the Arctic (Longyearbreen), Norway (BlĂ„isen), the Alps (Forni) and maritime Antarctic (Ecology Glacier). Generally, we found no consistent difference in sampling zones within cryoconite holes, which suggests homogeneity on the hole floors. However, we did find strong differences and high heterogeneity between subsamples, even within the same zone. Invertebrate densities ranged between 52 and 426 individuals per ml in subsamples collected from the same hole. We found from zero to four trdigrade species in the cryoconite hole on Longyearbreen. Our results show that benthic animals in cryoconite holes in various climatic zones have heterogeneous spatial distribution, even if no preference could be highlighted for upstream versus downstream areas with respect to water flow. The distribution of invertebrates may result from ecosystem disturbance by flushing water and animals’ active movement. Cryoconite holes, usually considered to be simple ecosystems, seem to be complex habitats where hidden spatial heterogeneity may affect abundance and diversity of organisms

    Sunitinib-induced hypothyroidism predicts progression-free survival in metastatic renal cell carcinoma patients

    Get PDF
    Sunitinib is a tyrosine kinase inhibitor (TKI) used in treatment of metastatic renal cell carcinoma (mRCC), gastrointestinal stromal tumors and pancreatic neuroendocrine tumors. One of the most common side effects related to sunitinib is hypothyroidism. Recent trials suggest correlation between the incidence of hypothyroidism and treatment outcome in patients treated with TKI. This study evaluates whether development of hypothyroidism is a predictive marker of progression-free survival (PFS) in patients with mRCC treated with sunitinib. Twenty-seven patients diagnosed with clear cell mRCC, after nephrectomy and in ‘good’ or ‘intermediate’ MSKCC risk prognostic group, were included in the study. All patients received sunitinib as a first-line treatment on a standard schedule (initial dose 50 mg/day, 4 weeks on, 2 weeks off). The thyroid-stimulating hormone serum levels were obtained at the baseline and every 12 weeks of treatment. In statistic analyses, we used Kaplan–Meier method for assessment of progression-free survival; for comparison of survival, we used log-rank test. In our study, the incidence of hypothyroidism was 44%. The patients who had developed hypothyroidism had better median PFS to patients with normal thyroid function 28,3 months [95% (CI) 20.4–36.2 months] versus 9.8 months (6.4–13.1 months). In survival analysis, we perceive that thyroid dysfunction is a predictive factor of a progression-free survival (PFS). In the unified group of patients, the development of hypothyroidism during treatment with sunitinib is a positive marker for PFS. During that treatment, thyroid function should be evaluated regularly

    Biotope and biocenosis of cryoconite hole ecosystems on Ecology Glacier in the maritime Antarctic

    Get PDF
    Abstract: Despite recent great interest in glacier ecosystems in the continental Antarctic, little is known about their maritime counterparts. Our study presents descriptive data on cryoconite sediments and cryoconite holes on Ecology Glacier (King George Island) to accomplish three main objectives: (a) to identify main eukaryotic (algae, invertebrates) and prokaryotic (cyanobacteria) components of microbial communities; (b) to provide a “baseline” of community composition, organic matter and artificial contamination; and (c) identify key abiotic factors that might be important in community assembly. Cryoconite holes were sampled along an altitudinal gradient of Ecology Glacier in January, mid Austral Summer 2017. Cryoconite holes located in lower altitude were deeper than those located in the middle and the highest altitude. Seventeen species of algae and cyanobacteria with biomass of 0.79 to 5.37 ”g/cm3 have been found in sediments. Dominant species were cyanobacterial Pseudanabaena frigida and Bacillariophyceae Microcostaus sp. Biomass of Bacillariophyceae was significantly higher than that of Chlorophyta and Cyanobacteria. We found three species of rotifers (two potentially new to science) and for the first time a glacier dwelling Acari (suspension feeder, Nanorchestes nivalis). Organic matter content ranged from 5.4% to 7.6%. Investigated artificial radionuclides included 137Cs, 238Pu, 239+240Pu and 241Am. 210Pb seems to be related to organic matter content. Overall, cryoconite holes on Ecology Glacier present unique habitats that serve as biodiversity hotspots of psychrophiles, source of organic matter, matrices for radioactivity tracking and model for observing changes in supraglacial ecosystems in Maritime Antarctic

    Trophic and symbiotic links between obligate-glacier water bears (Tardigrada) and cryoconite microorganisms

    Get PDF
    Insights into biodiversity and trophic webs are important for understanding ecosystem functions. Although the surfaces of glaciers are one of the most productive and biologically diverse parts of the cryosphere, the links between top consumers, their diet and microbial communities are poorly understood. In this study, for the first time we investigated the relationships between bacteria, fungi and other microeukaryotes as they relate to tardigrades, microscopic metazoans that are top consumers in cryoconite, a biologically rich and productive biogenic sediment found on glacier surfaces. Using metabarcoding (16S rDNA for bacteria, ITS1 for fungi, and 18S rDNA for other microeukaryotes), we analyzed the microbial community structures of cryoconite and compared them with the community found in both fully fed and starved tardigrades. The community structure of each microbial group (bacteria, fungi, microeukaryotes) were similar within each host group (cryoconite, fully fed tardigrades and starved tardigrades), and differed significantly between groups, as indicated by redundancy analyses. The relative number of operational taxonomic units (ZOTUs, OTUs) and the Shannon index differed significantly between cryoconite and tardigrades. Species indicator analysis highlighted a group of microbial taxa typical of both fully fed and starved tardigrades (potential commensals), like the bacteria of the genera Staphylococcus and Stenotrophomonas, as well as a group of taxa typical of both cryoconite and fully fed tardigrades (likely part of the tardigrade diet; bacteria Flavobacterium sp., fungi Preussia sp., algae Trebouxiophyceae sp.). Tardigrades are consumers of bacteria, fungi and other microeukaryotes in cryoconite and, being hosts for diverse microbes, their presence can enrich the microbiome of glaciers

    Is oxygenation related to the decomposition of organic matter in cryoconite holes?

    Get PDF
    Cryoconite is a sediment occurring on glacier surfaces worldwide which reduces ice albedo and concentrates glacier surface meltwater into small reservoirs called cryoconite holes. It consists of mineral and biogenic matter, including active microorganisms. This study presents an experimental insight into the influence of sediment oxygenation on the cryoconite ability to produce and decomposition of organic matter. Samples were collected from five glaciers in the Arctic and the European mainland. Cryoconite from three glaciers was incubated in stagnant and mechanically mixed conditions to imitate inter-hole water–sediment mixing by meltwater occurring on glaciers in Northern Hemisphere, and its effect on oxygen profiles and organic matter content. Moreover, we investigated short-term changes of oxygen conditions in cryoconite from four glaciers in illuminated and dark conditions. An anaerobic zone was present or approaching zero oxygen in all illuminated cryoconite samples, varying in depth depending on the origin of cryoconite: from 1500 ”m from Steindalsbreen (Scandinavian Peninsula) and Forni Glacier (The Alps) to 3100 ”m from Russell Glacier and Longyearbreen (Arctic) after incubation. Organic matter content varied between glaciers from 6.11% on Longyearbreen to 16.36% on Russell Glacier. The mixed sediment from the Forni Glacier had less organic matter than stagnant, the sediment from Longyearbreen followed this trend, but the difference was not statistically significant, while the sediment from Ebenferner did not differ between groups. Our results have implications for the understanding of biogeochemical processes on glacier surfaces, the adaptation of organisms to changing physical conditions due to abrupt sediment mixing, but also on the estimation of productivity of supraglacial systems
    corecore