58 research outputs found

    Adapting specifications for reactive controllers

    Get PDF
    For systems to respond to scenarios that were unforeseen at design time, they must be capable of safely adapting, at runtime, the assumptions they make about the environment, the goals they are expected to achieve, and the strategy that guarantees the goals are fulfilled if the assumptions hold. Such adaptation often involves the system degrading its functionality, by weakening its environment assumptions and/or the goals it aims to meet, ideally in a graceful manner. However, finding weaker assumptions that account for the unanticipated behaviour and of goals that are achievable in the new environment in a systematic and safe way remains an open challenge. In this paper, we propose a novel framework that supports assumption and, if necessary, goal degradation to allow systems to cope with runtime assumption violations. The framework, which integrates into the MORPH reference architecture, combines symbolic learning and reactive synthesis to compute implementable controllers that may be deployed safely. We describe and implement an algorithm that illustrates the working of this framework. We further demonstrate in our evaluation its effectiveness and applicability to a series of benchmarks from the literature. The results show that the algorithm successfully learns realizable specifications that accommodate previously violating environment behaviour in almost all cases. Exceptions are discussed in the evaluation

    HABITAT: A longitudinal multilevel study of physical activity change in mid-aged adults

    Get PDF
    Purpose. To explore the role of the neighborhood environment in supporting walking Design. Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting. The Brisbane City Local Government Area, Australia, 2007. Subjects. Brisbane residents aged 40 to 65 years. Measures. Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis. The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results. After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion. The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease

    Rapid Fishery Assessment by Market Survey (RFAMS)--an improved rapid-assessment approach to characterising fish landings in developing countries.

    No full text
    The complex multi-gear, multi-species tropical fisheries in developing countries are poorly understood and characterising the landings from these fisheries is often impossible using conventional approaches. A rapid assessment method for characterising landings at fish markets, using an index of abundance and estimated weight within taxonomic groups, is described. This approach was developed for contexts where there are no detailed data collection protocols, and where consistent data collection across a wide range of fisheries types and geographic areas is required, regardless of the size of the site and scale of the landings. This methodology, which was demonstrated at seven fish landing sites/fish markets in southern Indonesia between July 2008 and January 2011, provides a rapid assessment of the abundance and diversity in the wild catch over a wide variety of taxonomic groups. The approach has wider application for species-rich fisheries in developing countries where there is an urgent need for better data collection protocols, monitoring future changes in market demographics, and evaluating health of fisheries

    Results of the Similarity of Percentages (SIMPER) analyses of the average daily estimated weight of landings for each of the bathome/gear combinations (see Table S2) for each at each site on each of the survey trips.

    No full text
    <p>Italics indicate the bathome/gear combinations that typified a site; regular text are those that distinguished between two sites. Bathomes: CorRef  =  coral reef; Est  =  estuarine; InsPel  =  inshore pelagic; Oce  =  oceanic; SheDem  =  shelf demersal; SloDem  =  slope demersal. Gear: Gil  =  gillnet; Hln  =  handline; Lng  =  longline; Pot  =  trap or pot; PursSei  =  purse seine.</p><p>Results of the Similarity of Percentages (SIMPER) analyses of the average daily estimated weight of landings for each of the bathome/gear combinations (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0109182#pone.0109182.s002" target="_blank">Table S2</a>) for each at each site on each of the survey trips.</p
    • …
    corecore