
Adapting Specifications for Reactive
Controllers

all names
dept. name of organization (of Aff.)

name of organization (of Aff.)
City, Country
email address

Abstract—For systems to respond to scenarios that were
unforeseen at design time, they must be capable of safely
adapting, at runtime, the assumptions they make about
the environment, the goals they are expected to achieve,
and the strategy that guarantees the goals are fulfilled
if the assumptions hold. Such adaptation often involves
the system degrading its functionality, by weakening its
environment assumptions and/or the goals it aims to meet,
ideally in a graceful manner. However, finding weaker
assumptions that account for the unanticipated behaviour
and of goals that are achievable in the new environment
in a systematic and safe way remains an open challenge.

In this paper, we propose a novel framework that
supports assumption and, if necessary, goal degradation
to allow systems to cope with runtime assumption viola-
tions. The framework, which integrates into the MORPH
reference architecture, combines symbolic learning and
reactive synthesis to compute implementable controllers
that may be deployed safely. We describe and implement an
algorithm that illustrates the working of this framework.
We further demonstrate in our evaluation its effectiveness
and applicability to a series of benchmarks from the
literature. The results show that the algorithm successfully
learns realizable specifications that accommodate previ-
ously violating environment behaviour in almost all cases.
Exceptions are discussed in the evaluation.

I. INTRODUCTION

For software systems to be truly capable of self-
adaptation at runtime, they must be capable of respond-
ing to scenarios that were unforeseen at design time.
To do this, they must be endowed with the ability to
reason, at runtime, about their system capabilities, their
goals, and the assumptions made about the behaviour of
their environment [1]. Such reasoning is also the essence
of requirements engineering [2]. Indeed, self-adaptation
is akin to having a system perform requirements en-
gineering at runtime. In terms of Jackson and Zave’s
machine-world model [3], the system must be capable
of exploring specifications (i.e., pairs of assumptions and
guarantees ⟨A,G⟩) that are realizable [4] with respect to

the system’s capabilities or interface. We say a specifica-
tion ⟨A,G⟩ is realizable if the system has a way of guar-
anteeing the goal G through its interface (by monitoring
the environment using its sensors and reacting through
its actuators) as long as the environment’s behaviour is
within the assumptions A.

The system must therefore be capable of automatically
synthesizing an operational strategy (c.f., operationaliza-
tion [5]) that adheres to the adapted specification. That
is, it must not only find ⟨A,G⟩ but must also compute
a strategy to achieve G assuming A. It must be able to
execute that strategy while continuing to be aware of new
unexpected violations of A (c.f., runtime monitoring).
Upon detecting further assumption violations, it must
be capable of evolving the specification, if necessary,
in such a way that a new strategy can be synthesized.

In this paper, we propose an approach that supports as-
sumption and goal graceful degradation so that software
systems can cope with runtime assumption violations.
We focus on system’s whose specifications are express-
ible in a special class of temporal logic language called
GR(1)[6]. In particular, the form of runtime adaptation
that we envisage is as follows. Consider an unexpected
scenario in which the original (design-time) assumptions
for which the system was developed are violated dur-
ing runtime. A system monitors its assumptions and,
upon discovering a violation, must first weaken these
assumptions to make them consistent with the observed
behaviour and then identify what specification it can
achieve that continues to guarantee the current goals
under the updated assumptions. Should guaranteeing
the goals be impossible, the system must be capable
of weakening the goals (i.e., degrading the services
provided) and identifying a new specification that can
guarantee the weakened goals under the updated assump-
tions. The specification must then be operationalized
and executed. Of course, revising goals and assumptions

and re-synthesizing a strategy for them may take time
and thus pre-defined fail-safe, fall-back, or quiescent
operational modes are still required during the change.
However, given the potential automatic recovery mech-
anism that learning and synthesis supports, remaining in
such modes would only be temporary.

As argued by many, self-adaptation requires an ex-
plicit representation at runtime of goals and assumptions
using models. These runtime models can be used to
monitor, verify and anticipate runtime behaviour. There
is a significant body of work on runtime monitoring [7]
and verification [8]. However, the challenging problem
of how to evolve goals and assumptions at runtime has
been studied to a lesser extent. Existing work proposes
defining rules at design time on how the models may
be evolved, e.g., see [9]. Thus, requirement specification
adaptation is constrained by how well these possible
evolutions were anticipated at design time. Work that
identifies quantitative parameters that can be adjusted
to adapt non-functional requirements [10] also require
identifying these parameters at design time.

We are interested in the challenge of developing gen-
eral automated reasoning techniques that can evolve a
system’s goals and assumptions without requiring these
evolutions to be anticipated at design time.

In summary, the contributions of this paper are: i)
introduction of a novel framework that supports assump-
tion weakening and goal degradation to allow software
systems to cope with runtime assumption violations. ii)
An algorithm for implementing the proposed framework
using symbolic learning and automated synthesis of
reactive controllers. iii) A report on experimentation
with the approach that shows the algorithm successfully
adapting specifications to environment violations.

II. A FRAMEWORK FOR ADAPTATION BASED ON
LEARNING AND CONTROLLER SYNTHESIS

We propose a framework for supporting specifica-
tion adaptation using symbolic learning and controller
synthesis. As an execution environment, we build on
the Morph [11] reference architecture and refine its
adaptation layer explaining how learning and synthesis
can work together to adapt to unexpected assumption
violations.

To illustrate the framework, we consider the classic
mine pump example originally introduced in [12]. We
use this example given its simple to understand on one
end, and it also allows us to demonstrate the various is-
sues that such a framework must be capable of handling.

The mine pump case study describes a simple control
system for preventing flooding in a mineshaft. The

Learner

Goal Model
Manager

events

Component Architecture

Synthesiser

controller or
counterstrategy

Goal (G) /
Asm (A)

behaviour
commands

Enactor

exception controller

G
o

a
l

M
a

n
a

ge
m

en
t

C
o

n
tr

o
ll

er
 E

n
a

ct
m

en
t

Effectors Probes

T
a

rg
et

Sy

st
em

Resource
Discovery

Goal (G’) /Asm (A’)

Fig. 1. The Morph Reference Architecture for Adaptive Systems.

controller is responsible for turning the pump on so that
the water level in the mine is kept within safe bounds.
There are also safety requirements that the controller
must meet when methane is present in the mine. The
goals G the system must achieve are as g1: “The pump
shall be off when methane is present in the mine.” and
g2: “The pump shall be on when the water reaches high
levels in the mine”. The assumptions A are a1: “The
water level decreases gradually when the pump is on.”
and for the sake of illustration a2: “Methane presence
and high water levels never occur at the same time.”

We assume that the architecture of a software with
adaptive capabilities (depicted in Fig. 1) has a core
component, the Enactor, which is loaded with a reactive
controller. The Enactor monitors the states of the various
system components and their environment (e.g., high wa-
ter levels are reached) and triggers actions controlled by
the software components based on the system’s current
state (e.g., turns the pump on).

While the system is running, if all assumptions are
valid, the controller is guaranteed to achieve its goal.
When an unexpected event is received (e.g., high water
and methane detected at the same time), the Enactor
raises an exception to the Goal Management layer whose
main responsibility is to evolve the knowledge it has
about the system’s environment and goals, and to use
the updated knowledge to produce a new controller
deployable in the Enactor. Our main contribution lies

2

Assumption
Violation Detection

Assumption
Weakening
<<learner>> G

A\Av

Av
’

Goal
Weakening
<<learner>>

Counterstrategy c

G’

Realisability
Checker

<<synthesis>>

2

3

4

1

Realizable?Weaken
assumptions?

 Violating behaviour π-

Original assumption A

No

Yes

No

<A’, G’>Yes

Valid assumptions

Violated assumptions Av

Original goals

weak assumption

weak goals

Counterstrategy c

Enactor

Fig. 2. Goal Management Workflow Sketch

in orchestrating and implementing the functions of the
Goal Management layer.

The Goal Management comprises three main com-
ponents. The goal manager component in the Goal
Management must deal with the fact that the system
is running a controller built for a specification ⟨A, G⟩
which is now known to be invalid as behaviour π̄
has been observed which is inconsistent with the as-
sumptions. To do so, it manages interactions between
two other components—specification learner and synthe-
sizer. The three components collectively aim to produce
a weakened specification ⟨A′,G′⟩ that is consistent with
π̄ and is realizable, i.e., there exists a controller that
can achieve G′. Human intervention can play a role in
the weakening process to indicate preference between
different realizable weakened specifications. This may
be particularly relevant for selecting between alternative
weakened system goals.

Fig. 2 shows an abstract representation of how the
learner and synthesizer interact. The learner is responsi-
ble for finding candidate weakenings to the assumptions
and/or goals (as instructed by the goal manager). The
assumption weakening step takes as input the original
invalid specification ⟨A,G⟩ and the violating behaviour
π̄ observed from the environment. The learner outputs a
new specification ⟨A′,G⟩ in which the assumptions now
are consistent with π̄. Nonetheless, the specification may
still be unrealisable. The synthesizer checks if the new
specification is relalizable. If not, it provides a counter-
example (technically referred to as a counterstrategy).

Counterstrategies are then used in consecutive itera-
tions by the learner to find alternative weakenings to
the assumptions or goals. The learner and synthesizer
interactions form a loop where the synthesizer checks
realizability and the learner attempts to modify the spec-

ification to achieve realisability when counterstrategies
are identified. Once a realizable specification is found
(e.g., where the original assumption (a2) about joint
presence of high water and methane is weakened to
a trivially valid assumption, e.g., allowing methane to
present when there is highwater, and the goal (g2) is
degraded to “The pump shall be on when the water
reaches high levels and there is no methane present in
the mine” , a new controller is deployed. This process of
specification weakening is initiated by the goal manager
whenever a new assumption violation(s) is detected.

III. BACKGROUND

We introduce the notations and terminologies we use
to describe our specification adaptation approach.

A. LTL over Infinite and Finite Sequences

The syntax of Linear Temporal Logic (LTL) is defined
over a finite non-empty set of propositional variables AP,
Boolean connectives ¬,∧ and→ and temporal operators
◦ (next), G (always), and U (strong until). A well-formed
LTL formula is constructed as follows.

ϕ := ⊤ | ⊥ | p | ¬ϕ | ϕ1 ∧ϕ2 | ◦ϕ | Fϕ | Gϕ | ϕ1Uϕ2

A formula p or its negation is called a literal. The
semantics of LTL is traditionally given in terms of
infinite sequences s0s1... over the alphabet AP. An
infinite sequence σ is lasso-shaped if it has the form
w1(w2)

ω , where w1 and w2 are finite sequences. Given
two sequences of states w1 and w2, their concatenation
is denoted as w1.w2. A sequence π ∈ Σω , where Σω

denotes the set of infinite sequences over AP, satisfies ϕ
at position i if and only if one the following holds:

• π, i |= p iff p ∈ πi
• π, i |= ¬ϕ iff π, i ̸|= ϕ
• π, i |= ϕ ∧ ψ iff π, i |= ϕ and π, i |= ψ
• π, i |= ◦ϕ iff π, i+ 1 |= ϕ
• π, i |= ϕ1Uϕ2 iff ∃k ≥ i : π, k |= ϕ2 and ∀j, i ≤
j < k : π, j |= ϕ1.

π |= ϕ iff π, 0 |= ϕ Other Boolean connectives are
defined in the standard way. The temporal operators Fϕ
and Gϕ are defined as Fϕ ≡ ⊤Uϕ and Gϕ ≡ ¬F¬ϕ
respectively. The the goal “The pump shall be off when
methane is detected in the mine” can be formalized
as G (Methane → ◦¬PumpOn). The language of an LTL
formula ϕ, denoted L(ϕ) is the set of infinite state
sequences w such that w |= ϕ. In this work, define
weakness of a formula relative to another in terms of
implication (rather than using other notions like [13]).

A variant of LTL was introduced recently in [14],
LTLf , whose semantics are defined in terms of finite

3

traces instead. Given a finite sequence π, the satisfaction
of an LTLf formula is inductively defined as follows:

• π, i |= ◦ϕ iff i < length(π) and π, i+ 1 |= ϕ
• π, i |= •ϕ iff i < length(π) implies π, i+ 1 |= ϕ
• π, i |= Gϕ iff for all i ≤ j ≤ length(π) π, j |= ϕ

The temporal operator • is called weak next which
abbreviates ¬ ◦ ¬. (Note that on finite traces, •ϕ is not
equivalent to ◦ϕ.) Past temporal operators are sometimes
used to keep specifications compact and easy to under-
stand [15]. We use the past operator yesterday (Y) which
is the past analogue of ◦, as well as historically (H),
to mean “it has always been the case that”. These are
introduced to enable our use of specifications found the
literature for benchmarking. The semantics are defined
as ϕ, i |= Yϕ iff 0 < i and π, i− 1 |= ϕ, and ϕ, i |= Hϕ
iff 0 ≤ j < i and π, j |= ϕ. Note that any LTL formula
with past operators can be rewritten by only future-time
operators [16]. We will refer literals preceded by a ◦ or
a Y as a temporal literal.

B. Synthesis of Open Controllers
A specification is represented as a tuple ⟨A,G⟩ of

two disjoint sets—a set of assumptions A and a set of
goals G. Intuitively, assumptions are those constraints
to which an environment is expected to conform and
goals are those constraints which the software must
satisfy. The environment’s state is characterized by a
subset of variables X ∈ V called input variables (e.g.,
{Methane, HighWater}), while the controller’s state is deter-
mined by Y = V\X of output variables (e.g., {PumpOn}).

In this context, we are interested in a subset of LTL
called GR (1) [17]. This includes formulae of the kind
ΦA → ΦG , where both ΦA and ΦG are conjunctions of
three kinds of LTL formulae: (1) initial conditions, θ,
purely Boolean formulae B(V) over the variables in V
not containing any temporal operator, constraining the
initial state of a system; (2) invariants, ρ, of the form
GB(V ∪ ◦V ∪ YV), temporal formulae containing only
an outer G operator and ◦ (resp. Y) operators such that
no two ◦ (resp. Y) are nested; these formulae encode
one-step transitions allowed in the system; (3) fairness
conditions of the form GFB(V), expressing a Boolean
condition B(V) holding infinitely many times in a sys-
tem execution. We consider an extended version of the
GR(1) language that allows for specifications expressed
according to the response pattern G(ψ → Fϕ) where ψ
and ϕ are Boolean expressions defined over V∪◦V∪ YV .
Each conjunct in ΦA is called an assumption (Asm), and
each one in ΦG is called a guarantee (Gar). Revisiting
the example introduced in Section II, This can now be
formalized as follows.

Gar PumpOffWhenMethane
FormalDef G (Methane → ◦¬PumpOn)

Gar PumpOnWhenHighWater
FormalDef G (HighWater → ◦PumpOn)

Asm AvoidUnsafeLevels
FormalDef G ¬(Methane ∧ HighWater)

Asm WaterLoweredWhenPumpOn
FormalDef G (YPumpOn ∧ PumpOn → ◦¬HighWater)

We further assume an initial goal ¬PumpOn and an
initial assumption ¬Methane ∧ ¬HighWater. The semantics
of GR(1) specifications are typically defined over two-
player game structures. A GR(1) game structure G
is a tuple ⟨X ,Y,Ainit,Ginit,Ainv,Ginv, γ⟩, where X ,Y
are the sets of input and output variables respectively;
Ainit,Ginit,Ainv and Ginv are the initial conditions and
invariants of the GR(1) formula; γ =

∧
i=1..mAfair(i)→∧

j=1..n Gfair(j) is a formula representing the game’s
winning condition.

A game structure can be depicted as a directed graph
such that every state corresponds to some valuation of
the system variables and each edge corresponds to a
pair of actions available to the two players. The first
player, called environment, assigns a value to the input
variables in order to satisfy the assumptions, and the
second player, the controller, responds by setting the
output variables in compliance with the guarantees. The
environment’s goal is to force the controller to violate
the guarantees while satisfying its assumptions.

The controller synthesis problem is formalized as
identifying a winning strategy for the controller in this
game: a strategy is a mapping from the history of past
valuations in the game and the current input choice by
the environment, to an output choice ensuring that the
controller satisfies the guarantees. A specification ⟨A,G⟩
is realizable if a strategy exists such that for all initial
environment choices, the initial states are winning states,
i.e., states from which the system can realize the formula.

(Ainit → Ginit) ∧ (Ainit → G((HAinv)→ Ginv))∧
(Ainit → G(Ainv → γ))

(1)

Efficient algorithms for GR(1) realizability checking
and controller synthesis exist, .e.g., [18], [17]. Formal
definitions of games and strategies, and of the algorithm
to compute controller strategies, are given in [18].

If such a controller strategy does not exist, the spec-
ification is said to be unrealizable. In this case there is
a strategy, called a counterstrategy, for the environment
that forces the violation of at least one guarantee [19].
Counterstrategies and, symmetrically to strategies, map

4

histories of executions and the current state onto the
next input choice by the environment. There are several
formal definitions of counterstrategies [19], [20], [21],
all having in common its representation as a transition
system whose states and/or transitions are labeled with
valuations of variables. We consider the definition of
“concrete” counterstrategies given in [21]. A run through
a counterstrategy is a sequence of states (possibly infi-
nite) from the initial state.

Given an unrealizable specification ⟨A,G⟩, we say
that G∗ ⊆ G is minimally unfulfillable w.r.t. to A iff
the removal of any goal g ∈ G∗ makes ⟨A,G∗\{g}⟩
realizable [22]. ⟨A,G∗⟩ is called an unrealizable core.

IV. SPECIFICATION ADAPTATION APPROACH

In this section, we describe a specific implementation
(shown in Algorithm 1) of the Goal Manager com-
ponent introduced in Section II. The algorithm calls
three main procedures to guide the weakening process:
Synthesize, WeakenGoal and WeakenAsm. We
explain these in detail in the remainder of this section,
for now we simply anticipate that Synthesize returns
a set of control strategies Ctl or a counterstrategy c
witnessing that the specification is unrealizable, while
WeakenGoal and WeakenAsm return new sets of
goals and assumptions respectively.

At the start, the approach assumes a realizable specifi-
cation ⟨A,G⟩ is given in which one or more assumptions
are violated by a given system observation π̄. The first
three lines of the algorithm are straightforward: goals,
assumptions, counterstrategies and the flag to degrade the
guarantees are initialized (lines 1–2). The assumptions
violated by π̄ in the initial assumptions A, we denote
as Av , are weakened to A′

v so as to be consistent with
the violation trace (line 4). Section IV-A describes the
working of this step. The updated specification ⟨A′,G⟩ is
checked for realizability (line 5). If it produces an empty
controller, the specification ⟨A′,G⟩ is unrealizable, and
counterstrategy c is returned. (The approach does not use
information about the minimally unfulfillable goals G′∗
in assumption weakening.) The procedure WeakenAsm
is then iteratively called to search for a weakening of
the original assumptions A which yields a realizable
specification using the violation trace π̄ and the com-
puted counterstrategy c (and all counterstrategies com-
puted thus far in Ca). The counterstrategies are used to
exclude assumption weakenings that yield unrealizable
specifications. Details of this are given in Section IV-B.

The decision to switch to goal weakening is triggered
by the degrade flag once set to true. This occurs when no
weakening A′

v of the violated assumptions in A exists

that is consistent with the violation traces observed and
that excludes all counterstrategies computed thus far.
It may also occur according to some other predefined,
domain-specific heuristic (line 10).

Once the goal weakening process is instigated, the
last counterstrategy c computed (from the assumption
weakening) is passed to WeakenGoal along with the
set Gcore, which corresponds to the set of goals that
cannot be fulfilled collectively in c, and the set of original
goals G. A process similar to assumption weakening
is followed in which any goal or its weakening that
appeared in Gcore (in any iteration) is updated. We use the
expression in the original goals when weakening goals to
remain as (syntacticly) similar as possible to the original
specification (lines 17–20). The main difference here is
that any goal weakening computed must be satisfied by
runs from the counterstrategies in Cg .

Note that in our design, the iterative procedure only
explores goals weakening after the assumption weaken-
ing exploration has terminated. The algorithm could be
modified to allow interleaving between assumption and
goal weakening and thus discover other combinations
of realizable assumptions and goals. Furthermore, we
assume the goal weakening uses the final assumption
weakening and its computed counterstrategy. This, as
discussed in Section V, can be modified to consider any
weakening computed from previous iterations along with
their counterstrategy.

We discuss in what follows our implementation of the
WeakenAsm and WeakenGoal procedures. For both
procedures, we consider an LTL learning task to be
defined as a tuple ⟨AP,Φ,Σ,Σ−⟩ where Φ a conjunction
of LTL formulae, Σ+ (resp. Σ−) is a set of finite or
infinite traces where for some σ ∈ Σ+, σ ̸|= Φ, and
for some σ̄ ∈ Σ−, σ̄ |= Φ, according to the semantics
described in Section III-A. A weakening Φ′ of Φ is a
solution if for all σ ∈ Σ+, σ |= Φ′ and for all σ̄ ∈ Σ−,
σ̄ ̸|= Φ. Several sound logic-based learners for LTL exist
such as [23], [24], [25].

A. Assumption Weakening for Consistency

Once the goal manager identifies the set of assump-
tions violated in A′ (let us denote this as Av), the
assumptions are passed to the WeakenAsm procedure.
This procedure is responsible for identifying a weakened
version of the violated assumptions in A′ that is satisfied
in the observed violation trace, i.e., π̄ |= A

′
, but in

none of the counterstrategies found, i.e., c ̸|= A
′

for
all c ∈ Ca. At the start, the set of counterstrategies Ca

is empty. Note that the inclusion of the violation trace

5

Algorithm 1: Degradation of a realizable speci-
fication

Data: Violation trace π̄
Data: realizable specification ⟨A,G⟩ such that

π̄ ̸|= A
Result: realizable specification ⟨A′,G′⟩ such that

π̄ |= A′

1 G′ := ∅; A′ := ∅;
2 degrade:= false;
3 Ca := ∅; Cg := ∅;
4 A′ ← WeakenAsm(A, π̄, Ca);
5 Ctl,c,G′∗ ← Synthesize(A′,G′);
6 while Ctl= ∅ and not degrade do
7 Ca := c ∪ Ca;
8 A′ ← WeakenAsm(A, π̄, Ca);
9 if A′

v = ∅ and not heuristic(A′,G) then
10 degrade:= true;
11 end
12 else
13 Ctl,c,G′∗ ← Synthesize(A′,G′);
14 end
15 end
16 Gcore := G′∗;
17 while Ctl= ∅ do
18 Cg := c ∪ Cg;
19 G′ ← WeakenGoal(G,Gcore, Cg);
20 Ctl,c,G′∗ ← Synthesize(A′,G′);
21 Gcore := Gcore ∪ G′∗;
22 end
23 return ⟨A′,G′⟩;

requires that the language of the weakened assumptions
includes at least one infinite trace with π̄ as its prefix.

In our context, the only forms of assumptions viola-
tions that are observed are those invalidating invariants.
(Fairness violations cannot be observed in finite time.)
We assume an assumption invariant has the general form
G(ϕ → ψ) where ϕ and ψ are Boolean formulas over
V∪◦X ∪ YV . (Any Boolean formula over V∪◦X ∪ YV
can be rewritten to conform to this form.) This provides
our procedure with a standard means for weakening
assumptions, since any formula of this form can be
weakened by adding a conjunct to the antecedent of
the implication ϕ. An important consideration we make
when weakening assumptions from finite violation traces
is that we interpret any ◦ appearing in the assumptions
as •. This is necessary given the nature of the trace
that will be forced to be consistent with the weakened
specification. Our assumption weakening procedure is

tasked with finding a minimal negated conjunction of
temporal literals:

¬(
∧

[θ][¬]vj) (2)

where θ ∈ {◦,Y} and vj ∈ X if θ = ◦, to conjoin
with the antecedent ϕ of a violated assumption that
makes the weakened version of the assumption satisfied
in π̄ (i.e., π̄ |= G(ϕ ∧ ¬(

∧
[θ][¬]vj) → ψ). (In the

context of a learning task, π̄ is added to Σ+ and Σ−

is initially empty.) The reason for this representation is
best illustrated by an example.

Let us consider our motivating example. Having ob-
served the finite trace π̄1 = s0s1 with:

s0 = {¬HighWater,¬Methane,¬PumpOn}
s1 = {HighWater,Methane,¬PumpOn}

the goal manager detects a violation to the assumption
AvoidUnsafeLevels, formally expressed as G ¬(Methane∧
HighWater) at s1. This triggers an assumption weakening
process to ensure the assumption AvoidUnsafeLevels ac-
counts for this observed behaviour. For implementation
purposes, our procedure rewrites the violated assumption
to the equivalent formula G (⊤ → ¬Methane∨¬HighWater).
It adds π̄1 to Σ+ then seeks a negated conjunction that,
if added to the antecedent of the implication ⊤, makes
the updated assumption satisfied in π̄1. Our learning
procedure searches for a conjunction

∧
[θ][¬]vj that is

satisfied in s1, whose negation will be conjoined to ⊤
thus making the weakened assumption true at state s1.
In this instance, an example of a negated conjunction
computed by the learner is ¬(Methane).

To compute such weakening, WeakenAsm defines
a candidate solution space using all (temporal) literals
in the language. To reduce the solution space, our
procedure implements a set of syntactic constraints that
excludes (temporal) literals that are not true in the state
at which the assumption is violated from being added
as a possible conjunct in

∧
[θ][¬]vj . This is justified

on semantics grounds. To illustrate this, consider our
violated assumption G (⊤ → ¬Methane∨¬HighWater)s. Our
procedure excludes temporal literals such as ¬Methane

from being added as a conjunct since its inclusion would
result in an assumption of the form G (⊤∧¬(Methane)→
¬Methane∨¬HighWater) which is also violated in the trace
π̄1 and in fact in this case unsatisfiable.

With the restriction above imposed, still multiple sub-
formulas of the form in Equation (2) remain candi-
date solutions for weakening the violated assumption
including: ¬(HighWater), ¬(Methane) and ¬(¬PumpOn) as
well as ¬(HighWater ∧ Methane), ¬(HighWater ∧ ¬PumpOn),

6

¬(Methane∧¬PumpOn) and ¬(HighWater∧Methane∧¬PumpOn).
The learning procedure selects the sub-formula that has
the fewest number of conjuncts that satisfies the condi-
tion π̄ |= A′

. In the case of our running example, the
assumption AvoidUnsafeLevels becomes G (¬Methane→
¬Methane ∨ ¬HighWater) which is a tautology.

The learned assumptions is guaranteed, by construc-
tion, to be weaker than the violated assumptions, and
to be consistent with the assumptions in the original
assumption of A, that are not violated in π̄.

B. Assumption Weakening for Realizability

The above process ensures that the updated assump-
tions A′ are consistent with the new observed behaviour.
However, it does not guarantee that the updated specifi-
cation ⟨A′,G⟩ is realizable. The reason for this is that our
initial application of WeakenAsm is only given prefixes
of traces to include and may “over” weaken, i.e. a typical
problem when learning from positive examples only. The
learner may compute a weaker assumption that is too
general or one that is too specific to the violation trace
encountered, which in either case may force the system
to violate its goals. Without sufficient examples that
demonstrate the language of an adequate assumption, the
procedure is not guaranteed to compute assumptions that
yield a realizable specification.

To address this, our algorithm first checks if a con-
troller can be synthesized from the updated specification
⟨A′,G⟩. If it cannot, the realizability checker returns
a counterstrategy c demonstrating how an environment
compliant with its new assumption A′ may force a
violation to a goal in G. This counterstrategy records the
sequences of states that the environment can traverse to
force such violation. Fig. 3 shows the counterstrategy
graph for the updated mine pump specification. Each
edge is labelled with the truth value assignment to input
choices and output choices made by the environment
and controller respectively. States s1 and s2 are deadlock
states since no successor state exists which can satisfy
both the goals PumpOnWhenHighWater, which requires the
pump should be on in the next state, and PumpOffWhen-

Methane, which requires the pump to be off.
Having found a counterstrategy, hence Ctl = ∅, the

approach enters the assumption weakening loop (lines 6–
15 in Alg. 1). If a heuristic condition is defined and met
for switching to goal weakening, then the corresponding
flag is set, and the loop terminates. Otherwise, the
counterstrategy is added to the set Ca and WeakenAsm
is invoked to find an alternative weakening A′

2 to the
violating assumption in A that is consistent with the
trace π̄, such that ci ̸|= A

′

2 for all ci ∈ Ca. To guide

{H:true, M:true} / {P:false}

{H:false, M:false} / {P:false}

s0

s2

s1
{H:true, M:true} / {P:true}

Fig. 3. Counterstrategy graph computed for ⟨A′, G⟩. H, M and P cor-
respond to the variables HighWater, Methane and PumpOn respectively.

the search toward a realizable specification, our imple-
mentation extracts a single (lasso-shaped) run rc from
the counterstrategy and uses it as a negative example in
Σ− of the learning task to prune out any assumption
weakening that may prescribe such a counterstrategy.
Note that a single run is sufficient to eliminate the
counterstrategy as shown in [20]. The learning procedure
is instigated again in search of an alternative minimal
negated conjunction of temporal literals ¬(

∧
[θ][¬]vj).

(The procedure is guaranteed to produce a different
assumption by the soundness of the learner.) Note that
our implementation only attempts to weaken the vio-
lated subset of assumptions in A. We assume these are
detected and flagged by the goal manager.

The assumption weakening loop terminates success-
fully once a weakening A′

n of A is found that makes
the specification realizable, where A′

n denotes nth weak-
ening of the violating assumption(s) in A. In this case,
the adaptation procedure also terminates. The approach
may fail to find a weakening of A, for instance owing to
restrictions over the language space of assumptions, or
because no weaker assumption exists to the learning task
defined (i.e., that is both satisfied by the violating trace
and unsatisfied by the counterstrategies). As in the first
case, A′

n → A is guaranteed to be valid by construction.
If it fails, our procedure initiates a search for a weak-
ening G′ of the goals G instead, using the specification
⟨A′

n,G⟩ the obtained prior to the strengthening attempts,
such that the specification ⟨A′,G′

m⟩ is realizable, where
Gm denotes mth weakening of G.

Let us return to the mine pump example. Since
the weakened specification ⟨A′

,G⟩ is not realizable,
WeakenAsm is invoked given the violation trace and the
counterstrategy in Fig. 3. From the counterstrategy, a run
r is extracted from the counterstrategy graph. In this case
r = s0s1 with s0 = {¬HighWater, ¬Methane, ¬PumpOn} and
s1 = {HighWater, Methane, PumpOn}. An alternative weak-
ening is computed: G (PumpOn→ ¬Methane ∨ ¬HighWater)
in A′

2 which is also unrealizable. Its counterstrategy
graph c2 is shown in Fig. 4 which instigates another

7

{H:false, M:true} / {P:false}

{H:false, M:false} / {P:false}

s0

s4

s3
{H:false, M:true} / {P:true}

s5

{H:true, M:true} / {P:true}

{H:true, M:true} / {P:true}

Fig. 4. Counterstrategy graph computed for ⟨A′
2, G⟩.

assumption weakening cycle. This time however, no
alternative weakening to the violating assumption in A
is found. Hence the algorithm sets degrade to true and
proceeds to goal weakening.

C. Goal Weakening

The goal weakening loop starts with an unrealizable
specification. The aim is to find a goal G′ that is a
weakening of the original goals G, i.e., G′ → G such
that ⟨A′,G′⟩ is realizable.

In the first instance, the counterstrategy c computed
for the assumption weakening case (line 13) is used. As
with assumption weakening, a run rc from the counter-
strategy is extracted. If the run is finite, as discussed
in Section IV-A, we interpret every ◦ operator as a
weak next •. Otherwise, we assume the semantics over
infinite traces. As we will illustrate in our example
below, with finite LTL semantics, the run rc would not
violate the guarantees at the last state. (This is because
no next state exists.) For a finite run rc to be used for
weakening the goals, it needs to demonstrate a behaviour
that is inconsistent with the current goal(s) but in the
language of the weakened goals. To generate such a
trace, a successor state s′ is forced in the trace. A natural
question that then arises is what assignment should such
state be given. In our approach, we force a state that
satisfies A′ and violates a goal in G. Given that rc
ends in a deadlock, any forced successor satisfying A′

is guaranteed to violate one or more goals in G′∗ but
none of the goals G\G′∗. In our work, the choice of
violated goal from G′∗ is at random. However, it can be
easily extended to incorporate knowledge about risks and
priorities, e.g., [26], to determine which goal to violate
or not. The implementation uses a SAT solving-based
approach [27] to compute a successor state such that
rc.s

′ |= A′ ∧ ¬G′∗ ∧
∧
G\G′∗. If the run extracted from

the counterstrategy is instead infinite, then no successor
state is generated. The lasso-shaped trace would illustrate
instead a violation to a fairness goal in G\G′∗.

In the case of the mine pump example, a run extracted
from Fig. 4 is extracted at random, in this case, as rc2 =

s0s3s5 with:

s0 = {¬HighWater,¬Methane,¬PumpOn}
s3 = {¬HighWater,Methane, PumpOn}
s5 = {HighWater,Methane,¬PumpOn}

The trace does not violate any of the goals up un-
til s5. The minimally unfulfillable goals in G′∗ are
PumpOffWhenMethane:G (Methane → ◦PumpOn) and PumpOn-

WhenHighWater: G (HighWater → ◦¬PumpOn). Our proce-
dure automatically populates a successor state s′ =
{¬HighWater,¬Methane,¬PumpOn} to s5 that satisfies both
the updated assumption AvoidUnsafeLevels and the original
WaterLoweredWhenPumpOn but violate PumpOnWhenHighWater.

Contrary to the assumption weakening procedure, in
which runs from counterstrategies were used as examples
of (prefixes of) traces that should be inconsistent with
specification, the runs from the counterstrategy for goal
weakening are used as examples of prefixes of infinite
traces that should be included in the language of the
updated specification, such that rcj |= G′ where rcj is
infinite, or rcj .s

′ |= G′, where rcj is finite, for each
cj ∈ Cg . Hence, rcj is added to Σ+ rather than Σ−. This
forces the learning engine to search for a weakening to
G that makes every cj ∈ Cg no longer a counterstrategy
(since the elimination of a run from a representing a play
in the counterstrategy for the environment, excludes the
whole counterstrategy). As with assumption invariants,
goal invariants are of the form G(ϕ → ψ), whilst
fairness goals, have the general form GF(ϕ) where ϕ
is a disjunction of conjunction of temporal literals.

When weakening a goal fairness (resp. invariant), our
implementation seeks a minimal disjunction of conjunc-
tion of temporal literals (i.e.,

∨∧
[θ][¬]vj) to disjoin to

the formula (resp. consequent) ψ. Returning to the mine
pump example, our learning procedure computes the
disjunct Methane to add to the consequent of PumpOnWhen-

HighWater to become G (HighWater→ ◦¬PumpOn ∨ Methane).

Once updated goals G′ are computed, the specification
⟨A′,G′⟩ is checked for realizability. If unrealizable, then
the approach proceeds to weaken the goals again using
the new counterstrategy and unrealizable core computed.
Note that in every iteration, the set of goals whose
formalization may be potentially updated is expanded
(line 21 in Alg. 1). The process iterates until a realizable
specification is reached. This is ensured since our weak-
ening procedure can, in the worst case, produce trivial
weakening to violated goals which is equivalent to true.
In the case of the mine pump example, the update goals
yields a realizable specification.

8

V. EVALUATION

In order to evaluate our approach to specification
adaptation, we must reproduce the adaptation scenario
described in Section II. That is, we start with a system
running a strategy that guarantees some realizable speci-
fication as long as the system’s environment conforms to
the specification’s assumptions. The specification adap-
tation must occur when the system observes environment
behaviour that is inconsistent with the assumptions.
At this point, the adaptation algorithm in Section IV
should be capable of finding a new specification that
is realizable and that is consistent with the environment
behaviour that triggered the adaptation. Such a specifi-
cation can then be used to synthesise and deploy a new
controller that continues system execution.

Thus, our research questions focus on the algorithm’s
ability to adapt specifications using as input the as-
sumption violation trace and the specification used to
synthesise the controller that was running at assumption
violation time. Our research questions are:
RQ1 Can the algorithm find a realizable specification

that accommodates for violating traces?
RQ2 Can the algorithm find the ideal specification, used

to simulate the environment?
To answer these questions we: (i) Start with realizable

specifications from the literature, which we refer to as
ideal specifications because we take their assumptions to
describe the true behaviour of the environment in which
the system is currently deployed. (ii) For each ideal
specification we computed mutated specifications by ran-
domly applying assumption strengthening patterns. Each
realizable mutation represents our starting point. That
is, we assume a system running a strategy synthesised
from the mutated realizable specification. (iii) For each
realizable mutation we compute a control strategy. (iv)
We compute execution traces for each control strategy in
an environment that conforms to the ideal specification,
and in which a violation of the mutated assumptions
occurs. (Violating trace).

The result is a set of mutated realizable specifications
and a set of corresponding violating traces that demon-
strate how the specification assumptions are invalid.

A. Implementation
The algorithm was implemented in Python on a Win-

dows PC with Intel(R) Core(TM) i7-1065G7 CPU @
1.30GHz 1.50 GHz Processor and 16GB RAM. The
learning software used for assumption and goal weaken-
ing was FastLAS [23] which is a publicly available, scal-
able symbolic learning tool. We use spectra [28] for syn-
thesis and the answer set solver clingo [29] for violation

TABLE I
SUMMARY OF MUTATED SPECIFICATIONS AND CORRESPONDING

VIOLATING TRACES.

Trace In Av

Length #A #G #Av Operators Variables
Case-Study Count Mean Mean Mean Mean Mean Min Max Mean Min Max

Arbiter 10 1.6 1.0 4.0 1.0 1.0 1 1 1.0 1 1
Genbuf 5 1.4 27.2 79.4 1.4 3.5 1 26 2.9 1 20
Lift 10 2.1 7.0 10.0 1.0 2.6 1 4 2.2 1 3
Minepump 25 2.1 1.0 2.0 1.0 2.2 1 4 1.5 1 2
Traffic 50 1.8 4.4 3.4 2.4 2.6 1 5 2.2 1 4
Traffic Single 50 2.3 2.8 1.4 1.0 3.4 2 4 2.8 2 3
All 150 2.0 4.0 5.5 1.5 2.7 1 26 2.3 1 20

generation and detection. For this implementation, before
the algorithm moves from assumption to goal weakening,
we chose to use the first weakened assumption A′

1 rather
than A′

n. This is because in practise, A′
n tends to be more

complex, in terms of number of (temporal) literals added.
Restoring the first weakened assumption helps preserve
syntactic similarity to the original specification.

B. Research Question 1

For RQ1, up to 10 unique violating traces were gener-
ated. The algorithm was then run on each violating trace
of each mutated specification and the results recorded
(see Tables III for results and II for performance).
Almost all runs found a realizable specification with
assumptions that are not violated by the violating trace.
In 3 of 150 runs, the timeout of 100 seconds was
exceeded and the specification at that point was still
unrealizable.

C. Research Question 2

For RQ2, the final weakened, realizable specifications
produced by the algorithm in addressing question one,
were compared, using spot [30], with the ideal specifica-
tions used to simulate the environments. The results can
be seen in Table III. Unless the timeout was reached, the
algorithm always produced a realizable specification that
did not violate the violating trace. A success indicates
that the algorithm weakened the assumptions and or
guarantees until both assumptions and guarantees were
identical to those of the ideal specification. It can be seen
that the algorithm weakened the mutated specification to
the ideal specification only 1 out of 150 runs. It is worth
noting that in none of the runs did the algorithm weaken
a goal to trivial—equivalent to dropping the goal.

The results demonstrate that the algorithm can find
a realizable specification that accommodates a violating
trace for several specifications in reasonable time for less
complex case studies. Although the algorithm can learn
the ideal specification used to simulate the environment,
it does so rarely. This is because the algorithm is being

9

TABLE II
ALGORITHM PERFORMANCE FOR RQ1.

Realizability Checks No. Weakened
Assumption Guarantee Asm Gar Learning Time (s)

Case-Study Count Mean Min Max Mean Min Max Mean Mean Mean Min Max

Arbiter 10 2.0 1 3 0.2 0 1 0.2 0.6 7.9 3.0 17.6
Genbuf 5 1.2 1 2 3.2 0 6 0.8 1.8 70.6 7.6 110.0
Lift 10 1.2 1 2 0.0 0 0 0.0 0.0 4.1 3.2 6.8
Minepump 25 1.4 1 7 0.0 0 0 0.0 0.0 3.8 2.4 20.1
Traffic 50 1.0 1 1 0.2 0 1 0.2 0.4 4.9 3.0 12.7
Traffic Single 50 1.3 1 4 0.0 0 0 0.0 0.0 4.0 3.0 11.9
All 150 1.3 1 7 0.2 0 6 0.1 0.2 6.8 2.4 110.0

TABLE III
RESULTS OF ALGORITHM FOR RQ2.

Case-Study realizable Unrealizable Success All

Arbiter 10 0 0 10
Genbuf 2 3 0 5
Lift 10 0 0 10
Minepump 25 0 0 25
Traffic 50 0 0 50
Traffic Single 49 0 1 50
All 146 3 1 150

run on a single violating trace, which is only one
example of environment behaviour. If the subsequent
controller were re-deployed in the environment, and
further violating traces gathered, this could help the
algorithm find the ideal specification over time.

Arbiter Genbuf Lift Minepump Traffic Traffic Single
Case-Study

0

20

40

60

80

100

Learning Time (s)
Boxplot grouped by Case-Study

VI. RELATED WORK

Our work is related to Goal Oriented Require-
ments Engineering (GORE) [31] and the Machine-World
model [3] in which focus is shifted from software
requirements to system goals and assumptions to sup-
port reasoning about alternative realization strategies,
pertinence, and completeness. As others (e.g., [32]),
we bring requirements engineering activities to runtime.
More specifically, we perform at runtime tasks (i.e., iden-

tification, assessment and resolution) related to GORE
obstacle analysis. More specifically, we perform obstacle
resolution at runtime, reacting to obstacles (environ-
ment assumption violations) and resolving them with
a new specification that accounts for their occurrence.
Predicting assumption violations is beyond this work,
but is considered in MORPH and has been addressed
using runtime verification, model checking and machine
learning (e.g., [33], [34], [35]). Patterns to support
manual obstacle resolution have been studied [36] and
more recently more automated using general techniques
based on logic-based learning such as [37]. They focus
only on goal satisfiability rather than realisability [4],
thus ignoring controllability of actions and events.

We envisage the application of our approach in
MORPH-based architectures. However, it could also be
applied to other architectures (e.g., [38], [39]) if extended
with runtime planning capabilities.

Runtime reasoning for adaptation has been studied
significantly. Most approaches consider a predefined
set of adaptation options or strategies which are se-
lected at runtime ([40], [41], [42], [43], [44]) or re-
quire manual or semi-automatic procedures for adap-
tation [45]. Unanticipated adaptations require dynamic
update/reconfiguration strategies [46], [47], [48].

Runtime adaptation of robotic missions synthesised
from temporal specifications has been studied before
(e.g.,[49], [50], [51]). Focus is on motion plans and
adaptation is triggered by the impossibility of moving
between two locations that were assumed to be con-
nected. It these works, it is the strategy that is adapted
to achieve the same motion goals (e.g., move round the
obstacle). Assumption learning is also studied in [52],
[53]. In none of these, goal weakening is considered.

VII. CONCLUSION

This paper proposed a framework for adapting spec-
ification of open controllers when their assumptions
about the environment are violated, which combines
reactive synthesis and symbolic learning to produce a
realizable degredation of the initial specification. Our
evaluation demonstrates the ability of our implementa-
tion to produce realizable specifications for benchmark
case studies in the literature. The paper discusses several
avenues for future work including deployment and the
integration of notions of risk when selecting which goal
to weaken. Approaches like [54] may also be considered
to support the learning explore the solution space more
efficiently. In addition, our implementation seeks the
closest adaptation syntactically to the original. We will
extend our approach to consider semantic similarity too.

10

REFERENCES

[1] S. Uchitel, V. Braberman, and N. D’Ippolito, “Runtime controller
synthesis for self-adaptation: Be discrete!” in 11th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, May 16-17, 2016, Austin, Texas. ACM,
2016.

[2] A. van Lamsweerde, Requirements Engineering: From system
goals to UML models to software specifications. John Wiley
& Sons, 2009.

[3] M. Jackson, “The world and the machine,” in Proceedings of the
17th international conference on Software engineering, ser. ICSE
’95. ACM, 1995, pp. 283–292.

[4] M. Abadi, L. Lamport, and P. Wolper, “Realizable and unre-
alizable specifications of reactive systems,” in Proceedings of
the 16th International Colloquium on Automata, Languages and
Programming, ser. ICALP ’89. Berlin, Heidelberg: Springer-
Verlag, 1989, p. 1–17.

[5] E. Letier and A. van Lamsweerde, “Deriving operational
software specifications from system goals,” SIGSOFT Softw.
Eng. Notes, vol. 27, no. 6, p. 119–128, nov 2002. [Online].
Available: https://doi.org/10.1145/605466.605485

[6] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive
(1) designs,” in Intl. Conf. on Verification, Model Checking and
Abstract Interpretation. Springer, 2006, pp. 364–380.

[7] N. Bencomo, S. Götz, and H. Song, “Models@run.time: a guided
tour of the state of the art and research challenges,” Software &
Systems Modeling, vol. 18, 10 2019.

[8] C. Sánchez, G. Schneider, W. Ahrendt, E. Bartocci, D. Bianculli,
C. Colombo, Y. Falcone, A. Francalanza, S. Krstic, J. M.
Lourenço, D. Nickovic, G. J. Pace, J. Rufino, J. Signoles,
D. Traytel, and A. Weiss, “A survey of challenges for
runtime verification from advanced application domains (beyond
software),” Formal Methods Syst. Des., vol. 54, no. 3, pp. 279–
335, 2019. [Online]. Available: https://doi.org/10.1007/s10703-
019-00337-w

[9] R. Ali, F. Dalpiaz, P. Giorgini, and V. E. S. Souza, “Requirements
evolution: From assumptions to reality,” in Proceedings of the
12th International Conference Enterprise, Business-Process and
Information Systems Modeling, 2011, pp. 372–382.

[10] C. Ghezzi and A. Molzam Sharifloo, Dealing with Non-
Functional Requirements for Adaptive Systems via Dynamic
Software Product-Lines. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 191–213.

[11] V. A. Braberman, N. D’Ippolito, J. Kramer, D. Sykes, and
S. Uchitel, “An extended description of MORPH: A reference
architecture for configuration and behaviour self-adaptation,” in
Software Engineering for Self-Adaptive Systems III. Assurances -
International Seminar, Dagstuhl Castle, Germany, December 15-
19, 2013, Revised Selected and Invited Papers, ser. Lecture Notes
in Computer Science, R. de Lemos, D. Garlan, C. Ghezzi, and
H. Giese, Eds., vol. 9640. Springer, 2013, pp. 377–408. [Online].
Available: https://doi.org/10.1007/978-3-319-74183-3 13

[12] J. Kramer and J. Magee, “Dynamic configuration
for distributed systems,” IEEE Trans. Software Eng.,
vol. 11, no. 4, pp. 424–436, 1985. [Online]. Available:
https://doi.org/10.1109/TSE.1985.232231

[13] D. G. Cavezza, D. Alrajeh, and A. György, “A weakness measure
for GR(1) formulae,” Formal Aspects Comput., vol. 33, no. 1, pp.
27–63, 2021. [Online]. Available: https://doi.org/10.1007/s00165-
020-00519-y

[14] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and lin-
ear dynamic logic on finite traces,” in Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence,
ser. IJCAI ’13. AAAI Press, 2013, p. 854–860.

[15] A. Cimatti, M. Roveri, and D. Sheridan, “Bounded verification
of past ltl,” in Formal Methods in Computer-Aided Design, A. J.

Hu and A. K. Martin, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 245–259.

[16] D. Gabbay, “The declarative past and imperative future,” in
Temporal Logic in Specification, B. Banieqbal, H. Barringer, and
A. Pnueli, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1989, pp. 409–448.

[17] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of Reactive(1)
designs,” in 7th International Conference on Verification, Model
Checking, and Abstract Interpretation, 2006, pp. 364–380.

[18] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’Ar,
“Synthesis of Reactive(1) designs,” Journal of Computer and
System Sciences, vol. 78, no. 3, pp. 911–938, 2012.

[19] R. Könighofer, G. Hofferek, and R. Bloem, “Debugging formal
specifications using simple counterstrategies,” in 2009 Formal
Methods in Computer-Aided Design, 2009, pp. 152–159.

[20] D. G. Cavezza and D. Alrajeh, “Interpolation-based GR(1)
assumptions refinement,” in Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, ser.
Lecture Notes in Computer Science, A. Legay and T. Margaria,
Eds., vol. 10205, 2017, pp. 281–297. [Online]. Available:
https://doi.org/10.1007/978-3-662-54577-5 16

[21] A. Kuvent, S. Maoz, and J. O. Ringert, “A symbolic justice
violations transition system for unrealizable gr(1) specifications,”
in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY,
USA: Association for Computing Machinery, 2017, p. 362–372.
[Online]. Available: https://doi.org/10.1145/3106237.3106240

[22] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev, “Diagnos-
tic information for realizability,” in 9th International Conference
on Verification, Model Checking, and Abstract Interpretation,
2008, pp. 52–67.

[23] M. Law, A. Russo, E. Bertino, K. Broda, and J. Lobo,
“Fastlas: Scalable inductive logic programming incorporating
domain-specific optimisation criteria,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34,
no. 03, pp. 2877–2885, Apr. 2020. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/5678

[24] D. Neider and I. Gavran, “Learning linear temporal properties,”
in 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, N. S.
Bjørner and A. Gurfinkel, Eds. IEEE, 2018, pp. 1–10. [Online].
Available: https://doi.org/10.23919/FMCAD.2018.8603016

[25] D. Athakravi, D. Alrajeh, K. Broda, A. Russo, and K. Satoh,
“Inductive learning using constraint-driven bias,” in Inductive
Logic Programming - 24th International Conference, ILP 2014,
Nancy, France, September 14-16, 2014, Revised Selected Papers,
2014, pp. 16–32.

[26] A. Cailliau and A. van Lamsweerde, “Runtime monitoring and
resolution of probabilistic obstacles to system goals,” ACM
Trans. Auton. Adapt. Syst., vol. 14, no. 1, pp. 3:1–3:40, 2019.
[Online]. Available: https://doi.org/10.1145/3337800

[27] V. Lifschitz, Answer Set Programming, 1st ed. Springer Pub-
lishing Company, Incorporated, 2019.

[28] S. Maoz and J. O. Ringert, “Reactive synthesis with spectra: A
tutorial,” in Proceedings of the 43rd International Conference
on Software Engineering: Companion Proceedings, ser. ICSE
’21. IEEE Press, 2021, p. 320–321. [Online]. Available:
https://doi.org/10.1109/ICSE-Companion52605.2021.00136

[29] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and P. Wanko, “Theory solving made easy with clingo 5,” in
Technical Communications of the 32nd International Conference
on Logic Programming, ICLP 2016 TCs, October 16-21,
2016, New York City, USA, ser. OASIcs, M. Carro, A. King,
N. Saeedloei, and M. D. Vos, Eds., vol. 52. Schloss Dagstuhl

11

- Leibniz-Zentrum für Informatik, 2016, pp. 2:1–2:15. [Online].
Available: https://doi.org/10.4230/OASIcs.ICLP.2016.2

[30] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Re-
nault, and L. Xu, “Spot 2.0 — a framework for LTL and ω-
automata manipulation,” in Proceedings of the 14th International
Symposium on Automated Technology for Verification and Anal-
ysis (ATVA’16), ser. Lecture Notes in Computer Science, vol.
9938. Springer, Oct. 2016, pp. 122–129.

[31] A. van Lamsweerde, “Goal-oriented requirements engineering: a
guided tour,” in Proceedings Fifth IEEE International Symposium
on Requirements Engineering, 2001, pp. 249–262.

[32] N. Bencomo, G. S. Blair, F. Fleurey, and C. Jeanneret, “Summary
of the 5th international workshop on models@run.time,” in
Models in Software Engineering - Workshops and Symposia at
MODELS 2010, Oslo, Norway, October 2-8, 2010, Reports and
Revised Selected Papers, ser. Lecture Notes in Computer Science,
J. Dingel and A. Solberg, Eds., vol. 6627. Springer, 2010, pp.
204–208. [Online]. Available: https://doi.org/10.1007/978-3-642-
21210-9 20

[33] S. Zudaire, F. Gorostiaga, C. Sánchez, G. Schneider, and S. Uchi-
tel, “Assumption monitoring using runtime verification for uav
temporal task plan executions,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 6824–
6830.

[34] M. Leucker, C. Sánchez, T. Scheffel, M. Schmitz, and
A. Schramm, “Runtime verification of real-time event
streams under non-synchronized arrival,” Softw. Qual. J.,
vol. 28, no. 2, pp. 745–787, 2020. [Online]. Available:
https://doi.org/10.1007/s11219-019-09493-y

[35] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-
adaptation via quantitative verification and sensitivity analysis at
run time,” IEEE Transactions on Software Engineering, vol. 42,
no. 1, pp. 75–99, 2016.

[36] A. van Lamsweerde and E. Letier, “Handling obstacles in goal-
oriented requirements engineering,” IEEE Transactions on Soft-
ware Engineering, vol. 26, no. 10, pp. 978–1005, 2000.

[37] D. Alrajeh, A. Cailliau, and A. van Lamsweerde, “Adapting
requirements models to varying environments,” in ICSE ’20:
42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, G. Rothermel and
D. Bae, Eds. ACM, 2020, pp. 50–61. [Online]. Available:
https://doi.org/10.1145/3377811.3380927

[38] E. Zavala, X. Franch, J. Marco, and C. Berger, “Hafloop: An
architecture for supporting highly adaptive feedback loops in self-
adaptive systems,” Future Generation Computer Systems, vol.
105, pp. 607–630, 2020.

[39] S. Garcıa, C. Menghi, P. Pelliccione, T. Berger, and R. Wohlrab,
“An architecture for decentralized, collaborative, and autonomous
robots,” in 2018 IEEE International Conference on Software
Architecture (ICSA), 2018, pp. 75–7509.

[40] P. Jamshidi, J. Cámara, B. Schmerl, C. Käestner, and D. Garlan,
“Machine learning meets quantitative planning: Enabling self-
adaptation in autonomous robots,” in 2019 IEEE/ACM 14th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2019, pp. 39–50.

[41] A. Nooruldeen and K. W. Schmidt, “State attraction under
language specification for the reconfiguration of discrete event
systems,” IEEE Trans. on Automatic Control, vol. 60, no. 6, pp.
1630–1634, June 2015.

[42] H. E. Garcia and A. Ray, “State-space supervisory control of
reconfigurable discrete event systems,” Int. Journal of Control,
vol. 63, no. 4, pp. 767–797, 1996.

[43] J. Cámara, B. Schmerl, and D. Garlan, “Software architecture
and task plan co-adaptation for mobile service robots,” in
Proceedings of the IEEE/ACM 15th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems,
ser. SEAMS ’20. New York, NY, USA: Association for

Computing Machinery, 2020, p. 125–136. [Online]. Available:
https://doi.org/10.1145/3387939.3391591

[44] U. Topcu, N. Ozay, J. Liu, and R. M. Murray, “On
synthesizing robust discrete controllers under modeling
uncertainty,” in Proceedings of the 15th ACM International
Conference on Hybrid Systems: Computation and Control,
ser. HSCC ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 85–94. [Online]. Available:
https://doi.org/10.1145/2185632.2185648

[45] C. M. Hayden, S. Magill, M. Hicks, N. Foster, and J. S.
Foster, “Specifying and verifying the correctness of dynamic
software updates,” in Proc. of the 4th Int. Conf. on Verified
Software: Theories, Tools, Experiments, ser. VSTTE’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 278–293.

[46] L. Nahabedian, V. Braberman, N. D’Ippolito, S. Honiden,
J. Kramer, K. Tei, and S. Uchitel, “Assured and correct dynamic
update of controllers,” in Proc. of the 11th Int. Symp. on Software
Engineering for Adaptive and Self-Managing Systems. ACM,
2016, pp. 96–107.

[47] A. Anderson and J. Rathke, “Migrating protocols in multi-
threaded message-passing systems,” in Proc. of the 2Nd Int.
Workshop on Hot Topics in Software Upgrades, ser. HotSWUp
’09. New York, NY, USA: ACM, 2009, pp. 8:1–8:5.

[48] D. Gupta, P. Jalote, and G. Barua, “A formal framework for
on-line software version change,” IEEE Trans. on Software
engineering, vol. 22, no. 2, 1996.

[49] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising
motion planning under linear temporal logic specifications in
partially known workspaces,” in 2013 IEEE International Con-
ference on Robotics and Automation, 2013, pp. 5025–5032.

[50] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking
temporal logic synthesis for uncertain environments,” in 2012
IEEE International Conference on Robotics and Automation,
2012, pp. 5163–5170.

[51] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray,
“Patching task-level robot controllers based on a local µ-calculus
formula,” in 2013 IEEE International Conference on Robotics
and Automation, 2013, pp. 4588–4595.

[52] J. Fu, H. G. Tanner, and J. Heinz, “Adaptive planning in unknown
environments using grammatical inference,” in 52nd IEEE Con-
ference on Decision and Control, 2013, pp. 5357–5363.

[53] Y. Chen, J. Tůmová, and C. Belta, “Ltl robot motion control
based on automata learning of environmental dynamics,” in 2012
IEEE International Conference on Robotics and Automation,
2012, pp. 5177–5182.

[54] D. Alrajeh, P. Benjamin, and S. Uchitel, “Adaptation2: Adapting
specification learners in assured adaptive systems,” in 36th
IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-
19, 2021. IEEE, 2021, pp. 1347–1352. [Online]. Available:
https://doi.org/10.1109/ASE51524.2021.9678919

12

