183 research outputs found

    Constraining dark matter decays with cosmic microwave background and weak lensing shear observations

    Full text link
    From observations at low and high redshifts, it is well known that the bulk of dark matter (DM) has to be stable or at least very long-lived. However, the possibility that a small fraction of DM is unstable or that all DM decays with a half-life time (τ\tau) significantly longer than the age of the Universe is not ruled out. One-body decaying dark matter (DDM) consists of a minimal extension to the Λ\LambdaCDM model. It causes a modification of the cosmic growth history as well as a suppression of the small-scale clustering signal, providing interesting consequences regarding the S8S_8 tension, which is the observed difference in the clustering amplitude between weak-lensing (WL) and cosmic microwave background (CMB) observations. In this paper, we investigate models in which a fraction or all DM decays into radiation, focusing on the long-lived regime, that is, τ≳H0−1\tau \gtrsim H_0^{-1} ( H0−1H_0^{-1} being the Hubble time). We used WL data from the Kilo-Degree Survey (KiDS) and CMB data from Planck. First, we confirm that this DDM model cannot alleviate the S8S_8 difference. We then show that the most constraining power for DM decay does not come from the nonlinear WL data, but from CMB via the integrated Sachs-Wolfe effect. From the CMB data alone, we obtain constraints of τ≥288\tau \geq 288~Gyr if all DM is assumed to be unstable, and we show that a maximum fraction of f=0.07f=0.07 is allowed to decay assuming the half-life time to be comparable to (or shorter than) one Hubble time. The constraints from the KiDS-1000 WL data are significantly weaker, τ≥60\tau \geq 60~Gyr and f<0.34f<0.34. Combining the CMB and WL data does not yield tighter constraints than the CMB alone, except for short half-life times, for which the maximum allowed fraction becomes f=0.03f=0.03. All limits are provided at the 95% confidence level

    Probing the two-body decaying dark matter scenario with weak lensing and the cosmic microwave background

    Full text link
    Decaying dark matter (DDM) scenarios have recently re-gained attention due to their potential ability to resolve the well-known clustering (or S8S_8) tension between weak lensing (WL) and cosmic microwave background (CMB) measurements. In this paper, we investigate a well-established model, where the original dark matter (DM) particle decays into a massless and a massive daughter particles. The latter obtains a velocity kick during the decay process resulting in a suppression of the matter power spectrum at scales that are observable with WL shear observations. We perform the first fully nonlinear WL analysis of this two-body decaying dark matter (Λ\LambdaDDM) scenario including intrinsic alignment and baryonic feedback processes. We thereby use the cosmic shear band power spectra from the KiDS-1000 data combining it with temperature and polarization data from Planck to constrain the Λ\LambdaDDM model. We report new limits on the decay rate and mass splitting parameters that are significantly stronger than previous results, especially for the case of low mass splittings. We also investigate the S8S_8 tension only finding a marginal improvement of 0.3σ\sigma for Λ\LambdaDDM compared to the Λ\LambdaCDM case. The improvement is not caused by a shift but a slight bloating of the posterior contours caused by the additional free model parameters. We therefore conclude that the two-body Λ\LambdaDDM model does not provide a convincing solution to the S8S_8 tension. Our emulator to model the nonlinear Λ\LambdaDDM power spectrum is published as part of the publicly available code DMemu at https://github.com/jbucko/DMemu.Comment: 16 pages, 13 figure

    A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    Get PDF
    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division

    Quasiparticle bandgap engineering of graphene and graphone on hexagonal boron nitride substrate

    Full text link
    Graphene holds great promise for post-silicon electronics, however, it faces two main challenges: opening up a bandgap and finding a suitable substrate material. In principle, graphene on hexagonal boron nitride (hBN) substrate provides potential system to overcome these challenges. Recent theoretical and experimental studies have provided conflicting results: while theoretical studies suggested a possibility of a finite bandgap of graphene on hBN, recent experimental studies find no bandgap. Using the first-principles density functional method and the many-body perturbation theory, we have studied graphene on hBN substrate. A Bernal stacked graphene on hBN has a bandgap on the order of 0.1 eV, which disappears when graphene is misaligned with respect to hBN. The latter is the likely scenario in realistic devices. In contrast, if graphene supported on hBN is hydrogenated, the resulting system (graphone) exhibits bandgaps larger than 2.5 eV. While the bandgap opening in graphene/hBN is due to symmetry breaking and is vulnerable to slight perturbation such as misalignment, the graphone bandgap is due to chemical functionalization and is robust in the presence of misalignment. The bandgap of graphone reduces by about 1 eV when it is supported on hBN due to the polarization effects at the graphone/hBN interface. The band offsets at graphone/hBN interface indicate that hBN can be used not only as a substrate but also as a dielectric in the field effect devices employing graphone as a channel material. Our study could open up new way of bandgap engineering in graphene based nanostructures.Comment: 8 pages, 4 figures; Nano Letters, Publication Date (Web): Oct. 25 2011, http://pubs.acs.org/doi/abs/10.1021/nl202725

    Effect of Layer-Stacking on the Electronic Structure of Graphene Nanoribbons

    Full text link
    The evolution of electronic structure of graphene nanoribbons (GNRs) as a function of the number of layers stacked together is investigated using \textit{ab initio} density functional theory (DFT) including interlayer van der Waals interactions. Multilayer armchair GNRs (AGNRs), similar to single-layer AGNRs, exhibit three classes of band gaps depending on their width. In zigzag GNRs (ZGNRs), the geometry relaxation resulting from interlayer interactions plays a crucial role in determining the magnetic polarization and the band structure. The antiferromagnetic (AF) interlayer coupling is more stable compared to the ferromagnetic (FM) interlayer coupling. ZGNRs with the AF in-layer and AF interlayer coupling have a finite band gap while ZGNRs with the FM in-layer and AF interlayer coupling do not have a band gap. The ground state of the bi-layer ZGNR is non-magnetic with a small but finite band gap. The magnetic ordering is less stable in multilayer ZGNRs compared to single-layer ZGNRs. The quasipartcle GW corrections are smaller for bilayer GNRs compared to single-layer GNRs because of the reduced Coulomb effects in bilayer GNRs compared to single-layer GNRs.Comment: 10 pages, 5 figure

    Contribution to the understanding of tribological properties of graphite intercalation compounds with metal chloride

    Get PDF
    Intrinsic tribological properties of lamellar compounds are usually attributed to the presence of van der Waals gaps in their structure through which interlayer interactions are weak. The controlled variation of the distances and interactions between graphene layers by intercalation of electrophilic species in graphite is used in order to explore more deeply the friction reduction properties of low-dimensional compounds. Three graphite intercalation compounds with antimony pentachloride, iron trichloride and aluminium trichloride are studied. Their tribological properties are correlated to their structural parameters, and the interlayer interactions are deduced from ab initio bands structure calculations

    Overview of the JET ITER-like wall divertor

    Get PDF

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET

    Get PDF

    Assessment of erosion, deposition and fuel retention in the JET-ILW divertor from ion beam analysis data

    Get PDF
    • …
    corecore