16,337 research outputs found

    Deriving the sampling errors of correlograms for general white noise

    Full text link
    We derive the second-order sampling properties of certain autocovariance and autocorrelation estimators for sequences of independent and identically distributed samples. Specifically, the estimators we consider are the classic lag windowed correlogram, the correlogram with subtracted sample mean, and the fixed-length summation correlogram. For each correlogram we derive explicit formulas for the bias, covariance, mean square error and consistency for generalised higher-order white noise sequences. In particular, this class of sequences may have non-zero means, be complexed valued and also includes non-analytical noise signals. We find that these commonly used correlograms exhibit lag dependent covariance despite the fact that these processes are white and hence by definition do not depend on lag.Comment: Submitted to Biometrik

    Sampling errors of correlograms with and without sample mean removal for higher-order complex white noise with arbitrary mean

    Full text link
    We derive the bias, variance, covariance, and mean square error of the standard lag windowed correlogram estimator both with and without sample mean removal for complex white noise with an arbitrary mean. We find that the arbitrary mean introduces lag dependent covariance between different lags of the correlogram estimates in spite of the lack of covariance in white noise for non-zeros lags. We provide a heuristic rule for when the sample mean should be, and when it should not be, removed if the true mean is not known. The sampling properties derived here are useful is assesing the general statistical performance of autocovariance and autocorrelation estimators in different parameter regimes. Alternatively, the sampling properties could be used as bounds on the detection of a weak signal in general white noise.Comment: 11 pages, 2 figures, To be published in Journal of Time Series Analysi

    Plastic deformation and wear process at a surface during unlubricated sliding

    Get PDF
    The plastic deformation and wear of a 304 stainless steel surface sliding against an aluminum oxide rider with a spherical surface (the radius of curvature: 1.3 cm) were observed by using scanning electron and optical microscopes. Experiments were conducted in a vacuum of one million Pa and in an environment of fifty thousandth Pa of chlorine gas at 25 C. The load was 500 grams and the sliding velocity was 0.5 centimeter per second. The deformed surface layer which accumulates and develops successively is left behind the rider, and step shaped proturbances are developed even after single pass sliding under both environmental conditions. A fully developed surface layer is gradually torn off leaving a characteristic pattern. The mechanism for tearing away of the surface layer from the contact area and sliding track contour is explained assuming the simplified process of material removal based on the adhesion theory for the wear of materials

    Plastic deformation at surface during unlubricated sliding

    Get PDF
    The plastic deformation and wear of 304 stainless-steel surface slid against an aluminum oxide rider were observed by using a scanning electron microscope and an optical microscope. Experiments were conducted in a vacuum of 0.000001 Pa and in an environment of 0.0005 Pa chlorine gas at 25 C. The load was 500 grams and the sliding velocity was 0.5 centimeter per second. The deformed surface layer which accumulates and develops successively is left behind the rider, and step-shaped protuberances are developed even after single pass sliding under both environmental conditions. A fully developed surface layer is gradually torn off leaving a characteristic pattern. These observations result from both adhesion and an adhesive wear mechanism

    Effect of ion-plated films of germanium and silicon on friction, wear, and oxidation of 52100 bearing steel

    Get PDF
    Friction and wear experiments were conducted with ion plated films of germanium and silicon on the surface of 52100 bearing steel both dry and in the presence of mineral oil. Both silicon and germanium were found to reduce wear, with germanium being more effective than silicon. An optimum film thickness of germanium for minimum wear without surface crack formation was found to be approximately 400 nanometers (4000 A). The presence of silicon and germanium on the 52100 bearing steel surface improved resistance to oxidation

    Ion plating seals microcracks or porous metal components

    Get PDF
    Description of ion plating process is given. Advantage of this process is that any plating metal or alloy can be selected, whereas, for conventional welding, material selection is limited by compatability

    Complex surfaces plated by thin-film deposition in one operation

    Get PDF
    Ion plating deposits thin film on complex surface in one operation. The ionized materials follow electric lines of force to all points on the objects, uniformly plating the surface from all sides simultaneously

    Metallic glass as a temperature sensor during ion plating

    Get PDF
    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes

    Friction and hardness of gold films deposited by ion plating and evaporation

    Get PDF
    Sliding friction experiments were conducted with ion-plated and vapor-deposited gold films on various substrates in contact with a 0.025-mm-radius spherical silicon carbide rider in mineral oil. Hardness measurements were also made to examine the hardness depth profile of the coated gold on the substrate. The results indicate that the hardness is influenced by the depth of the gold coating from the surface. The hardness increases with an increase in the depth. The hardness is also related to the composition gradient in the graded interface between the gold coating and the substrate. The graded interface exhibited the highest hardness resulting from an alloy hardening effect. The coefficient of friction is inversely related to the hardness, namely, the load carrying capacity of the surface. The greater the hardness that the metal surface possesses, the lower is the coefficient of friction. The graded interface exhibited the lowest coefficient of friction
    corecore