18 research outputs found

    Carcass characteristics of cattle differing in Jersey proportion

    Get PDF
    peer-reviewedComparison of alternative dairy (cross-)breeding programs requires full appraisals of all revenues and costs, including beef merit. Few studies exist on carcass characteristics of crossbred dairy progeny originating from dairy herds as well as their dams. The objective of the present study was to quantify, using a national database, the carcass characteristics of young animals and cows differing in their fraction of Jersey. The data set consisted of 117,593 young animals and 42,799 cows. The associations between a combination of sire and dam breed proportion (just animal breed proportion when the dependent variable was on cows) with age at slaughter (just for young animals), carcass weight, conformation, fat score, price per kilogram, and total carcass value were estimated using mixed models that accounted for covariances among herdmates of the same sex slaughtered in close proximity in time; we also accounted for age at slaughter in young animals (which was substituted with carcass weight and carcass fat score when the dependent variable was age at slaughter), animal sex, parity of the cow or dam (where relevant), and temporal effects represented by a year-by-month 2-way interaction. For young animals, the heaviest of the dairy carcasses were from the mating of a Holstein-Friesian dam and a Holstein-Friesian sire (323.34 kg), whereas the lightest carcasses were from the mating of a purebred Jersey dam to a purebred Jersey sire which were 46.31 kg lighter (standard error of the difference = 1.21 kg). The young animal carcass weight of an F1 Holstein-Friesian × Jersey cross was 20.4 to 27.0 kg less than that of a purebred Holstein-Friesian animal. The carcass conformation of a Holstein-Friesian young animal was 26% superior to that of a purebred Jersey, translating to a difference of 0.78 conformation units on a scale of 1 to 15. Purebred Holstein-Friesians produced carcasses with less fat than their purebred Jersey counterparts. The difference in carcass price per kilogram among the alternative sire-dam breed combinations investigated was minimal, although large differences existed among the different breed types for overall carcass value; the carcass value of a Holstein-Friesian animal was 20% greater than that of a Jersey animal. Purebred Jersey animals required, on average, 21 d longer to reach a given carcass weight and fat score relative to a purebred Holstein-Friesian. The difference in age at slaughter between a purebred Holstein-Friesian animal and the mating between a Holstein-Friesian sire with a Jersey dam, and vice versa, was between 7.0 and 8.9 d. A 75.8-kg difference in carcass weight existed between the carcass of a purebred Jersey cow and that of a Holstein-Friesian cow; a 50% Holstein–Friesian-50% Jersey cow had a carcass 42.0 kg lighter than that of a purebred Holstein-Friesian cow. Carcass conformation was superior in purebred Holstein-Friesian compared with purebred Jersey cows. Results from this study represent useful input parameters to populate simulation models of alternative breeding programs on dairy farms, and to help beef farmers evaluate the cost-benefit of rearing, for slaughter, animals differing in Jersey fraction.This publication arose from research supported in part by a research grant from Science Foundation Ireland (Dublin) and the Department of Agriculture, Food and Marine on behalf of the Government of Ireland under the Grant 16/RC/3835 (VistaMilk; Dublin, Ireland) as well as funding from the Research Stimulus Fund (BreedQuality and GREENBREED; Dublin, Ireland) and Meat Technology Ireland (MTI; Dublin, Ireland), a co-funded industry/Enterprise Ireland project (TC 2016 002)

    Dairy cattle breeding objectives combining production and non-production traits for pasture based systems in Ireland.

    Get PDF
    End of Project ReportThe objectives of this study were: 1) to estimate genetic (co) variances among body condition score, body weight, milk production, linear type traits and fertility, and 2) to investigate the presence of genotype by environment interactions for milk production, body condition score, and body weight, in Irish grass based seasonal calving herds. Genetic parameters were estimated from a potential 8928 primiparous and multiparous Holstein-Friesian cows over two years (1999 and 2000). Heritability estimates for body condition score (BCS) and body weight (BW) were found to be moderate to high; estimates ranged from 0.27 to 0.51 for BCS, and from 0.39 to 0.61 for BW. Heritability estimates for BCS change and BW change at different stages of lactation were all less than 0.11. Heritability for the linear type traits varied from 0.11 to 0.43. Phenotypic and genetic correlations between BCS and BW at the same stage of lactation were all close to 0.50 indicating that approximately 25% of the genetic and phenotypic variation in BW may be attributed to differences in BCS. Genetic correlations between BCS and milk yield tended to be negative (-0.14 to –0.51) and genetic correlations between BW and milk yield were close to zero (-0.07 to 0.09). However, the genetic correlations between BW adjusted for differences in BCS were positive (0.15 to 0.39). Genetic correlations between BCS and the fertility traits investigated were all favourable, indicating that cows with a superior genetic merit for BCS are on average likely to be served sooner, receive less services and have higher pregnancy rates. The genetic correlations between linear type traits and milk yield indicate that selection for milk production has resulted in taller, deeper cows that tend to be more angular and have less body condition. Genetically these cows are predisposed to inferior reproductive efficiency. Moderate genetic correlations were found between some of the linear type traits investigated and somatic cell count. A comparison of BCS, as recorded by Teagasc personnel (scale 1-5) and Holstein herd-book classifiers (scale 1-9) indicated consistency between the two sources. Phenotypic and genetic correlations of 0.54 and 0.86, respectively, were observed between the two measurement sources on the same animals. Genotype by environment interactions, were found for milk yield across different silage quality environments, and for BCS across different herd-year milk yield, concentrate, grazing severity and silage quality environments

    Additive genetic, non-additive genetic and permanent environmental effects for female reproductive performance in seasonal calving dairy females

    Get PDF
    peer-reviewedFunding from the research Stimulus Fund, GENCOST, is gratefully acknowledged.Excellent reproductive performance (i.e. 365-day calving interval) is paramount to herd profit in seasonal-calving dairy systems. Reproductive targets are currently not being achieved in Irish dairy herds. Furthermore, most research on the genetics of reproductive performance in dairy cattle has focused primarily on lactating cows and relatively few studies have attempted to quantify the genetic contribution to differences in reproductive performance in nulliparae. The objective of the present study was to estimate the contribution of both the additive and non-additive genetic components, as well as the permanent environmental component, to phenotypic variation in the reproductive traits in nulliparous, primiparous and multiparous seasonal-calving dairy females. Reproductive phenotypes were available on up to 202,525 dairy females. Variance components were estimated using (repeatability where appropriate) linear animal mixed models; fixed effects included in the mixed models were contemporary group, parity (where appropriate), breed proportion, inter-breed specific heterosis coefficients and inter-breed specific recombination loss coefficients. Heritability of the reproductive traits ranged from 0.004 (pregnancy rate to first service) to 0.17 (age at first service in nulliparae), while repeatability estimates for the reproductive traits in cows ranged from 0.01 (calving interval) to 0.11 (pregnant in the first 42 days of the breeding season). Breed-specific heterosis regression coefficients suggest that, relative to the parental mean, a first-cross Holstein–Jersey crossbred was almost 7 days younger at first calving, had a 9-day shorter calving interval, a 6 percentage unit greater pregnancy rate in the first 42 days of the breeding season and a 3 percentage unit greater survival rate to next lactation. Heifer calving rate traits were strongly genetically correlated with age at first calving (–0.97 to –0.66) and calving rate in the first 42 days of the calving season for first parity cows (0.77 to 0.56), but genetic correlations with other cow reproductive traits were weak and inconsistent. Calving interval was strongly genetically correlated with the majority of the cow traits; 56%, 40%, and 92% of the genetic variation in calving interval was explained by calving to the first service interval, number of services and pregnant in the first 42 days of the breeding season, respectively. Permanent environmental correlations between the reproductive performance traits were generally moderate to strong. The existence of contributions from non-additive genetic and permanent environmental effects to phenotypic differences among cows suggests the usefulness of such information to rank cows on future expected performance; this was evidenced by a stronger correlation with future reproductive performance for an individual cow index that combined additive genetic, non-additive genetic and permanent environmental effects compared to an index based solely on additive genetic effects (i.e. estimated breeding values).Funding from the Research Stimulus Fund, GENCOST, is gratefully acknowledged

    The effect of Holstein-Friesian genotype and feeding system on selected performance parameters of dairy cows on grass-based systems of milk production in Ireland

    Get PDF
    End of project reportThe overall objective of this project was to assess, the effect of strain of Holstein-Friesian dairy cow, pasture-based feed system (FS) and their interaction on animal performance in terms of milk productivity and lactation profile, body weight (BW), body condition score (BCS), feed intake and energy balance (EB), reproductive performance and overall economic profitability

    CONTENTO: An open simulator for storage and content management services in mobile edge computing

    Get PDF
    As the research on edge computing rises, tools are required to assess how the workloads from users impact on the resources of mobile networks and how the edge and its storage platform can further handle those workloads to improve the perceived Quality of Experience (QoE). Nevertheless, simulators for cloud and edge computing have mostly centred on the computing resources to conduct research on high performance computing, leaving storage aside. Thus, there is a lack of simulation tools focused on storage resources and how content is handled across the network. Storage is a valuable resource that can be exploited in storage services, like edge Content Delivery Networks (CDNs) to reduce delivery latency and the use of backhaul links. Thus, research on this field is compelling to improve network and applications performance, and specialized tools can promote it. Here, we present a Content OrieNTed Edge computiNg simulaTOr (CONTENTO) for the design of content management strategies through a customizable processing pipeline. CONTENTO allows edge applications to use the pipeline for tasks including content popularity detection and IoT data processing, and collects data rate and traffic statistics to assess the management strategies. We demonstrate CONTENTO’s flexibility for implementing and experimenting with relevant case studies for the uplink and downlink. CONTENTO contributes by providing a common ground to define content management techniques and evaluate their performance under varying workloads and network configurations

    Development of an index to rank dairy females on expected lifetime profit

    Get PDF
    peer-reviewedThe objective of this study was to develop an index to rank dairy females on expected profit for the remainder of their lifetime, taking cognizance of both additive and nonadditive genetic merit, permanent environmental effects, and current states of the animal including the most recent calving date and cow parity. The cow own worth (COW) index is intended to be used for culling the expected least profitable females in a herd, as well as inform purchase and pricing decisions for trading of females. The framework of the COW index consisted of the profit accruing from (1) the current lactation, (2) future lactations, and (3) net replacement cost differential. The COW index was generated from estimated performance values (sum of additive genetic merit, nonadditive genetic merit, and permanent environmental effects) of traits, their respective net margin values, and transition probability matrices for month of calving, survival, and somatic cell count; the transition matrices were to account for predicted change in a cow’s state in the future. Transition matrices were generated from 3,156,109 lactation records from the Irish national database between the years 2010 and 2013. Phenotypic performance records for 162,981 cows in the year 2012 were used to validate the COW index. Genetic and permanent environmental effects (where applicable) were available for these cows from the 2011 national genetic evaluations and used to calculate the COW index and their national breeding index values (includes only additive genetic effects). Cows were stratified per quartile within herd, based on their COW index value and national breeding index value. The correlation between individual animal COW index value and national breeding index value was 0.65. Month of calving of the cow in her current lactation explained 18% of the variation in the COW index, with the parity of the cow explaining an additional 3 percentage units of the variance in the COW index. Females ranking higher on the COW index yielded more milk and milk solids and calved earlier in the calving season than their lower ranking contemporaries. The difference in phenotypic performance between the best and worst quartiles was larger for cows ranked on COW index than cows ranked on the national breeding index. The COW index is useful to rank females before culling or purchasing decisions on expected profit and is complementary to the national breeding index, which identifies the most suitable females for breeding replacements

    Using context-awareness for storage services in edge computing

    Get PDF
    Modern mobile networks face a dynamic environment with massive devices and heterogeneous service expectations that will need to significantly scale for 5G. Edge computing approaches aim at enhancing scalability through strategies like computation offloading and local storage services, which will be fundamental to deploying large-scale distributed applications. Unlike the cloud, edge resources are limited, which call for novel techniques to handle large volumes of up- and downstream data under a changing environment. Being closer to data consumers and producers, a compelling view is to adopt context-aware techniques for enabling the edge to work with patterns from mobile traffic at different spatiotemporal scales. In this article, we overview the challenges and opportunities of edge storage from the perspective of context-awareness. We introduce a conceptual architecture to learn and exploit context information for enhancing uplink and downlink scenarios. Finally, we outline future directions for edge applications

    Relationship between live weight and body condition score in Irish Holstein-Friesian dairy cows

    Get PDF
    peer-reviewedThe objective of this study was to quantify the change in live weight (LWT) per unit change in body condition score (BCS) for Irish Holstein-Friesian dairy cows. Mixed model analyses were performed on 82 948 test-day records of BCS and LWT across 11 075 lactations from 7391 cows, representing 62 commercial and 4 research herds, during the years 1999 and 2000. Factors included in the mixed models were parity, stage of the inter-calving interval and the three-way interaction between herd, year and fortnight of the calendar year at calving. Interactions between the effect of BCS and either parity or stage of the inter-calving interval were included in some models to evaluate the effect of these factors on the relationship between LWT and BCS. A moderate correlation (0.49) existed between BCS and LWT in the complete dataset, but it differed significantly with parity and stage of the inter-calving interval (range 0.36 to 0.59). Analysis of the entire dataset yielded an estimate of 50 kg LWT change per unit change in BCS and this coefficient ranged from 39 kg to 66 kg, depending on parity or the stage of the inter-calving interval. Accurate values of LWT per unit BCS are important input parameters for animal or herd-level biological models designed to evaluate the energy demands of the animal or herd

    Body condition score and live-weight effects on milk production in Irish Holstein-Friesian dairy cows

    Get PDF
    peer-reviewedThe objective of the present study was to quantify the relationships among body condition score (BCS; scale 1 to 5), live weight (WT) and milk production in Irish Holstein-Friesian spring calving dairy cows. Data were from 66 commercial dairy herds during the years 1999 and 2000. The data consisted of up to 9886 lactations with records for BCS or WT at least once pre-calving, or at calving, nadir or 60 days post-calving. Change in BCS and WT was also calculated between time periods. Mixed models with cow included as a random effect were used to quantify the effect of BCS and WT, as well as change in each trait, on milk yield, milk fat concentration and milk protein concentration. Significant and sometimes curvilinear associations were observed among BCS at calving or nadir and milk production. Total 305-day milk yield was greatest in cows calving at a BCS of 4.25 units. However, cows calving at a BCS of 3.50 units produced only 68 kg less milk than cows calving at a BCS of 4.25 units while cows calving at 3.25 or 3.00 BCS units produced a further 50 and 114 kg less, respectively. Cows that lost more condition in early lactation produced more milk of greater fat and protein concentration, although the trend reversed in cows that lost large amounts of condition post-calving. Milk yield increased with WT although the marginal effect decreased as cows got heavier. Milk fat and protein concentration in early lactation also increased with WT pre-calving, calving and nadir, although WT did not significantly affect average lactation milk fat concentration.Allied Irish Bank; Artificial Insemination Managers Association; Holstein-Friesian Society of Great Britain and Ireland; Dairy Levy Farmer Funds; EU Structural Funds (FEOGA

    Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows

    Get PDF
    peer-reviewedPhenotypic and genetic (co)variances among type traits, milk yield, body weight, fertility and somatic cell count were estimated. The data analysed included 3,058 primiparous spring-calving Holstein-Friesian cows from 80 farms throughout the south of Ireland. Heritability estimates for the type traits varied from 0.11 to 0.43. Genetic correlations among some type traits were very strong and may indicate the possibility of reducing the number of traits assessed on each animal; the genetic correlation between angularity and body condition score was –0.84. Genetic correlations between all type traits (except body condition score, udder depth and teat length) and milk yield were positive and ranged from 0.08 to 0.69. The possibility of selecting for body weight may be achievable within a national progeny-testing programme using type traits within a selection index. Moderate to strong genetic correlations existed between some type traits and the various fertility measures and somatic cell count indicating the opportunity of indirect selection for improved fertility and health of animals using type traits within a selection index; however, the standard errors of some of the genetic correlations were large and should thus be treated with caution. Genetically taller, wider, deeper, more angular cows with tighter, stronger, shallower udders were predisposed to have inferior pregnancy rates to first service and require more services.Allied Irish Bank; AI Managers Association; Holstein-Friesian Society of Great Britain and Ireland; Dairy Levy Farmer Funds; European Union Structural Funds (FEOGA) programme
    corecore