1,227 research outputs found
High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures
We present high field magneto-transport data from a range of 30nm wide
InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples
studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between
1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess
of 6 m2V-1s-1. It is found that the Landau level broadening decreases with
carrier density and beating patterns are observed in the magnetoresistance with
non-zero node amplitudes in samples with the narrowest broadening despite the
presence of a large g-factor. The beating is attributed to Rashba splitting
phenomenon and Rashba coupling parameters are extracted from the difference in
spin populations for a range of samples and gate biases. The influence of
Landau level broadening and spin-dependent scattering rates on the observation
of beating in the Shubnikov-de Haas oscillations is investigated by simulations
of the magnetoconductance. Data with non-zero beat node amplitudes are
accompanied by asymmetric peaks in the Fourier transform, which are
successfully reproduced by introducing a spin-dependent broadening in the
simulations. It is found that the low-energy (majority) spin up state suffers
more scattering than the high-energy (minority) spin down state and that the
absence of beating patterns in the majority of (lower density) samples can be
attributed to the same effect when the magnitude of the level broadening is
large
The JCMT dense gas survey of the Perseus Molecular Cloud
We present the results of a large-scale survey of the very dense gas in the
Perseus molecular cloud using HCO+ and HCN (J = 4 - 3) transitions. We have
used this emission to trace the structure and kinematics of gas found in pre-
and protostellar cores, as well as in outflows. We compare the HCO+/HCN data,
highlighting regions where there is a marked discrepancy in the spectra of the
two emission lines. We use the HCO+ to identify positively protostellar
outflows and their driving sources, and present a statistical analysis of the
outflow properties that we derive from this tracer. We find that the relations
we calculate between the HCO+ outflow driving force and the Menv and Lbol of
the driving source are comparable to those obtained from similar outflow
analyses using 12CO, indicating that the two molecules give reliable estimates
of outflow properties. We also compare the HCO+ and the HCN in the outflows,
and find that the HCN traces only the most energetic outflows, the majority of
which are driven by young Class 0 sources. We analyse the abundances of HCN and
HCO+ in the particular case of the IRAS 2A outflows, and find that the HCN is
much more enhanced than the HCO+ in the outflow lobes. We suggest that this is
indicative of shock-enhancement of HCN along the length of the outflow; this
process is not so evident for HCO+, which is largely confined to the outflow
base.Comment: 25 pages, 14 figures, 9 table
A Surface-Gated InSb Quantum Well Single Electron Transistor
Single electron charging effects in a surface-gated InSb/AlInSb QW structure
are reported. This material, due to its large g-factor and light effective
mass, offers considerable advantages over more commonly used materials, such as
GaAs, for quantum information processing devices. However, differences in
material and device technology result in significant processing challenges.
Simple Coulomb blockade and quantised confinement models are considered to
explain the observation of conductance oscillations in these structures. The
charging energy is found to be comparable with the energy spectrum for single
particle states
Going beyond Clustering in MD Trajectory Analysis: An Application to Villin Headpiece Folding
Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii) they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous
Phase-dependent light propagation in atomic vapors
Light propagation in an atomic medium whose coupled electronic levels form a
diamond-configuration exhibits a critical dependence on the input conditions.
In particular, the relative phase of the input fields gives rise to
interference phenomena in the electronic excitation whose interplay with
relaxation processes determines the stationary state. We integrate numerically
the Maxwell-Bloch equations and observe two metastable behaviors for the
relative phase of the propagating fields corresponding to two possible
interference phenomena. These phenomena are associated to separate types of
response along propagation, minimize dissipation, and are due to atomic
coherence. These behaviors could be studied in gases of isotopes of
alkali-earth atoms with zero nuclear spin, and offer new perspectives in
control techniques in quantum electronics.Comment: 16 pages, 11 figures, v2: typos corrected, v3: final version, to
appear in Phys. Rev.
Band anticrossing in GaNxSb1–x
Fourier transform infrared absorption measurements are presented from the dilute nitride semiconductor GaNSb with nitrogen incorporations between 0.2% and 1.0%. The divergence of transitions from the valence band to E– and E+ can be seen with increasing nitrogen incorporation, consistent with theoretical predictions. The GaNSb band structure has been modeled using a five-band k·p Hamiltonian and a band anticrossing fitting has been obtained using a nitrogen level of 0.78 eV above the valence band maximum and a coupling parameter of 2.6 eV
Band gap reduction in GaNSb alloys due to the anion mismatch
The structural and optoelectronic properties in GaNxSb1–x alloys (0<=x<0.02) grown by molecular-beam epitaxy on both GaSb substrates and AlSb buffer layers on GaAs substrates are investigated. High-resolution x-ray diffraction (XRD) and reciprocal space mapping indicate that the GaNxSb1–x epilayers are of high crystalline quality and the alloy composition is found to be independent of substrate, for identical growth conditions. The band gap of the GaNSb alloys is found to decrease with increasing nitrogen content from absorption spectroscopy. Strain-induced band-gap shifts, Moss-Burstein effects, and band renormalization were ruled out by XRD and Hall measurements. The band-gap reduction is solely due to the substitution of dilute amounts of highly electronegative nitrogen for antimony, and is greater than observed in GaNAs with the same N content
New Consequences of Induced Transparency in a Double-Lambda scheme: Destructive Interference In Four-wave Mixing
We investigate a four-state system interacting with long and short laser
pulses in a weak probe beam approximation. We show that when all lasers are
tuned to the exact unperturbed resonances, part of the four-wave mixing (FWM)
field is strongly absorbed. The part which is not absorbed has the exact
intensity required to destructively interfere with the excitation pathway
involved in producing the FWM state. We show that with this three-photon
destructive interference, the conversion efficiency can still be as high as
25%. Contrary to common belief,our calculation shows that this process, where
an ideal one-photon electromagnetically induced transparency is established, is
not most suitable for high efficiency conversion. With appropriate
phase-matching and propagation distance, and when the three-photon destructive
interference does not occur, we show that the photon flux conversion efficiency
is independent of probe intensity and can be close to 100%. In addition, we
show clearly that the conversion efficiency is not determined by the maximum
atomic coherence between two lower excited states, as commonly believed. It is
the combination of phase-matching and constructive interference involving the
two terms arising in producing the mixing wave that is the key element for the
optimized FWM generation. Indeed, in this scheme no appreciable excited state
is produced, so that the atomic coherence between states |0> and |2> is always
very small.Comment: Submitted to Phys. Rev. A, 7 pages, 4 figure
High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures
We present high field magneto-transport data from a range of 30nm wide InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between 1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess of 6 m2V-1s-1. It is found that the Landau level broadening decreases with carrier density and beating patterns are observed in the magnetoresistance with non-zero node amplitudes in samples with the narrowest broadening despite the presence of a large g-factor. The beating is attributed to Rashba splitting phenomenon and Rashba coupling parameters are extracted from the difference in spin populations for a range of samples and gate biases. The influence of Landau level broadening and spin-dependent scattering rates on the observation of beating in the Shubnikov-de Haas oscillations is investigated by simulations of the magnetoconductance. Data with non-zero beat node amplitudes are accompanied by asymmetric peaks in the Fourier transform, which are successfully reproduced by introducing a spin-dependent broadening in the simulations. It is found that the low-energy (majority) spin up state suffers more scattering than the high-energy (minority) spin down state and that the absence of beating patterns in the majority of (lower density) samples can be attributed to the same effect when the magnitude of the level broadening is large
Professionele geheimhouding
Confidentiality is a “sensitive” subject known to all professional nursing personnel. The perception of confidentiality in nursing students was determined during a research project. Some responses were surprising. The surprises were mostly due to the fast development in the medical and technology fields. These findings proved to be of significance in that guidelines for confidentiality are not up to date with the developments in these fields. These guidelines should be revised or rewritten to bring them up to date and help the professional nurse in decisions on aspects concerning confidentiality
- …