20 research outputs found

    Excitonic AND Logic Gates on DNA Brick Nanobreadboards

    Get PDF
    A promising application of DNA self-assembly is the fabrication of chromophore-based excitonic devices. DNA brick assembly is a compelling method for creating programmable nanobreadboards on which chromophores may be rapidly and easily repositioned to prototype new excitonic devices, optimize device operation, and induce reversible switching. Using DNA nanobreadboards, we have demonstrated each of these functions through the construction and operation of two different excitonic AND logic gates. The modularity and high chromophore density achievable via this brick-based approach provide a viable path toward developing information processing and storage systems

    Evaluating the quality of social work supervision in UK children's services: comparing self-report and independent observations

    Get PDF
    Understanding how different forms of supervision support good social work practice and improve outcomes for people who use services is nearly impossible without reliable and valid evaluative measures. Yet the question of how best to evaluate the quality of supervision in different contexts is a complicated and as-yet-unsolved challenge. In this study, we observed 12 social work supervisors in a simulated supervision session offering support and guidance to an actor playing the part of an inexperienced social worker facing a casework-related crisis. A team of researchers analyzed these sessions using a customized skills-based coding framework. In addition, 19 social workers completed a questionnaire about their supervision experiences as provided by the same 12 supervisors. According to the coding framework, the supervisors demonstrated relatively modest skill levels, and we found low correlations among different skills. In contrast, according to the questionnaire data, supervisors had relatively high skill levels, and we found high correlations among different skills. The findings imply that although self-report remains the simplest way to evaluate supervision quality, other approaches are possible and may provide a different perspective. However, developing a reliable independent measure of supervision quality remains a noteworthy challenge

    Psychology and legal change: On the limits of a factual jurisprudence.

    Full text link

    Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye

    No full text
    International audienceSemiconductor nanocrystals or quantum dots (QDs) should act as excellent Förster resonance energy transfer (FRET) acceptors due to their large absorption cross section, tunable emission, and high quantum yields. Engaging this type of FRET can be complicated due to direct excitation of the QD acceptor along with its longer excited-state lifetime. Many cases of QDs acting as energy transfer acceptors are within time-gated FRET from long-lifetime lanthanides, which allow the QDs to decay before observing FRET. Efficient QD sensitization requires the lanthanide to be in close proximity to the QD. To overcome the lifetime mismatch issues and limited transfer range, we utilized a Cy3 dye to bridge the energy transfer from an extremely long lived terbium emitter to the QD. We demonstrated that short-lifetime dyes can be used as energy transfer relays between extended lifetime components and in this way increased the distance of terbium-QD FRET to ∌14 nm

    Resonance Energy Transfer in DNA Duplexes Labeled with Localized Dyes

    No full text
    The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor–acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump–probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye–dye interaction

    Evaluating Dye-Labeled DNA Dendrimers for Potential Applications in Molecular Biosensing

    No full text
    DNA nanostructures provide a reliable and predictable scaffold for precisely positioning fluorescent dyes to form energy transfer cascades. Furthermore, these structures and their attendant dye networks can be dynamically manipulated by biochemical inputs, with the changes reflected in the spectral response. However, the complexity of DNA structures that have undergone such types of manipulation for direct biosensing applications is quite limited. Here, we investigate four different modification strategies to effect such dynamic manipulations using a DNA dendrimer scaffold as a testbed, and with applications to biosensing in mind. The dendrimer has a 2:1 branching ratio that organizes the dyes into a FRET-based antenna in which excitonic energy generated on multiple initial Cy3 dyes displayed at the periphery is then transferred inward through Cy3.5 and/or Cy5 relay dyes to a Cy5.5 final acceptor at the focus. Advantages of this design included good transfer efficiency, large spectral separation between the initial donor and final acceptor emissions for signal transduction, and an inherent tolerance to defects. Of the approaches to structural rearrangement, the first two mechanisms we consider employed either toehold-mediated strand displacement or strand replacement and their impact was mainly via direct transfer efficiency, while the other two were more global in their effect using either a belting mechanism or an 8-arm star nanostructure to compress the nanostructure and thereby modulate its spectral response through an enhancement in parallelism. The performance of these mechanisms, their ability to reset, and how they might be utilized in biosensing applications are discussed

    FRET from Multiple Pathways in Fluorophore-Labeled DNA

    No full text
    Because of their ease of design and assembly, DNA scaffolds provide a valuable means for organizing fluorophores into complex light harvesting antennae. However, as the size and complexity of the DNA–fluorophore network grows, it can be difficult to fully understand energy transfer properties because of the large number of dipolar interactions between fluorophores. Here, we investigate simple DNA–fluorophore networks that represent elements of the more complex networks and provide insight into the Förster Resonance Energy Transfer (FRET) processes in the presence of multiple pathways. These FRET networks consist of up to two Cy3 donor fluorophores and two Cy3.5 acceptor fluorophores that are linked to a rigid dual-rail DNA scaffold with short interfluorophore separation corresponding to 10 DNA base pairs (∌34 Å). This configuration results in five FRET pathways: four hetero-FRET and one homo-FRET pathway. The FRET properties are characterized using a combination of steady-state and time-resolved spectroscopy and understood using Förster theory. We show that the multiple FRET pathways lead to an increase in FRET efficiency, in part because homo-FRET between donor fluorophores provides access to parallel pathways to the acceptor and thereby compensates for low FRET efficiency channels caused by a static transition dipole distribution. More generally, the results show that multiple pathways may be used in the design of artificial light harvesting devices to compensate for inhomogeneities and nonideal ensemble effects that degrade FRET efficiency
    corecore