9,677 research outputs found

    Correlations in nuclear energy recurrence relations

    Full text link
    The excitation energies of states belonging to the ground state bands of heavy even-even nuclei are analysed using recurrence relations. Excellent agreement with experimental data at the 10 keV level is obtained by taking into account strong correlations which emerge in the analysis. This implies that the excitation energies can be written as a polynomial of maximum degree four in the angular momentum.Comment: 4 pages, 1 figure, 1 table, 9 reference

    Pyroclastic deposits and volcanic history of Mayor Island

    Get PDF
    The emergent summit of Mayor Island, Bay of Plenty, New Zealand, is a peralkaline rhyolite volcano constructed by: a sequence of lava flows, the Tutaretare Rhyolite Formation new; and pyroclastic deposits, the Oira Pyroclastite Formition (new). These 2 formations constitute the Mayor Island Group new. The pyroclastic deposits mantle most of the outer slopes of the island, in places exceeding 100 m in thickness, and also occur interbedded with lava flows of the main cone. The pyroclastics have been informally assigned on the basis of their compositional, welding and textural, and sedimentary structural characteristics to one or other of 15 lithotypes which may be related to particular modes of eruption and emplacement, of both airfall (phreatic, phreatomagmatic, phreatoplinian, and plinian types) and pyroclastic flow (ignimbrite, nuée ardente, and base surge types origins). A sixteenth lithotype comprises epiclastic deposits formed possibly by catastrophic overspill from an ancestral crater lake. Two new radiocarbon dates on logs from the pyroclastic deposits are recorded: (Wk105) 8000 ± 70 years B.P., and (Wk77) 6340 ± 190 years B.P. Recognition of the calcalkaline Rotoehu and possibly Rotoma Ashes on Mayor Island, together with the new radiocarbon dates, enables definition of 8 phases of major volcanic activity, each separated by relatively quiescent periods with erosion and paleosol formation. Volcanism commenced sometime prior to 42 000 years ago and has continued intermittently up to the eruption of the young dome lavas, possibly less than 1000 years ago. At present, only I Mayor Island-derived tephra has been identified on the mainland of the North Island, namely the Tuhua Tephra dated (Wk77) at source as 6340 ± 190 years B .P. However, the character and magnitude of several of the pyroclastic units on Mayor Island is such that recognition of other peralkaline tephras is anticipated in northern North Island

    alpha-nucleus potentials for the neutron-deficient p nuclei

    Full text link
    alpha-nucleus potentials are one important ingredient for the understanding of the nucleosynthesis of heavy neutron-deficient p nuclei in the astrophysical gamma-process where these p nuclei are produced by a series of (gamma,n), (gamma,p), and (gamma,alpha) reactions. I present an improved alpha-nucleus potential at the astrophysically relevant sub-Coulomb energies which is derived from the analysis of alpha decay data and from a previously established systematic behavior of double-folding potentials.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    The development of a cislunar space infrastructure

    Get PDF
    The primary objective of this Advanced Mission Design Program is to define the general characteristics and phased evolution of a near-Earth space infrastructure. The envisioned foundation includes a permanently manned, self-sustaining base on the lunar surface, a space station at the Libration Point between earth and the moon (L1), and a transportation system that anchors these elements to the Low Earth Orbit (LEO) station. The implementation of this conceptual design was carried out with the idea that the infrastructure is an important step in a larger plan to expand man's capabilities in space science and technology. Such expansion depends on low cost, reliable, and frequent access to space for those who wish to use the multiple benefits of this environment. The presence of a cislunar space infrastructure would greatly facilitate the staging of future planetary missions, as well as the full exploration of the lunar potential for science and industry. The rationale for, and a proposed detailed scenario in support of, the cislunar space infrastructure are discussed

    Seed conservation in ex situ genebanks - genetic studies on longevity in barley

    Get PDF
    Recognizing the danger due to a permanent risk of loss of the genetic variability of cultivated plants and their wild relatives in response to changing environmental conditions and cultural practices, plant ex situ genebank collections were created since the beginning of the last century. World-wide more than 6 million accessions have been accumulated of which more than 90% are stored as seeds. Research on seed longevity was performed in barley maintained for up to 34 years in the seed store of the German ex situ genebank of the Leibniz-Institute of Plant Genetics and Crop Plant Research in Gatersleben. A high intraspecific variation was detected in those natural aged accessions. In addition three doubled haploid barley mapping populations being artificial aged were investigated to study the inheritance of seed longevity. Quantitative trait locus (QTL) mapping was based on a transcript map. Major QTLs were identified on chromosomes 2H, 5H (two) and 7H explaining a phenotypic variation of up to 54%. A sequence homology search was performed to derive the putative function of the genes linked to the QTLs

    Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection

    Full text link
    Over the course of several decades, organic liquid scintillators have formed the basis for successful neutrino detectors. Gadolinium-loaded liquid scintillators provide efficient background suppression for electron antineutrino detection at nuclear reactor plants. In the Double Chooz reactor antineutrino experiment, a newly developed beta-diketonate gadolinium-loaded scintillator is utilized for the first time. Its large scale production and characterization are described. A new, light yield matched metal-free companion scintillator is presented. Both organic liquids comprise the target and "Gamma Catcher" of the Double Chooz detectors.Comment: 16 pages, 4 figures, 5 table

    Electromagnetic Transition Strengths in Heavy Nuclei

    Full text link
    We calculate reduced B(E2) and B(M1) electromagnetic transition strengths within and between K-bands in support of a recently proposed model for the structure of heavy nuclei. Previously, only spectra and a rough indication of the largest B(E2) strengths were reported. The present more detailed calculations should aid the experimental identification of the predicted 0+0^+, 1+1^+ and 2+2^+ bands and, in particular, act to confirm or refute the suggestion that the model 0+0^+ and 2+2^+ bands correspond to the well known and widespread beta and gamma bands. Furthermore they pinpoint transitions which can indicate the presence of a so far elusive 1+1^+ band by feeding relatively strongly into or out of it. Some of these transitions may already have been measured in 230^{230}Th, 232^{232}Th and 238^{238}U.Comment: 10 pages, 1 Figure, submitted to Physical Review
    • 

    corecore