574 research outputs found

    The Structure of C2H4 Clusters from Theoretical Interaction Potentials and Vibrational Predissociation Data

    Get PDF
    Optimized geometries and binding energies are calculated for ethene (ethylene) dimers, trimers, and tetramers based on a pairwise additive dimer potential. From these results intermolecular frequencies and relative abundancies (catchment areas) of the different isomers are obtained and compared with the results of accurate measurements of the photodissociation upon absorption of one photon of a CO2 laser in the region of the ν7 monomer absorption band at 949 cm-1. The clusters are size selected in a scattering experiment and show for a cluster size from n=2 to n=6 a frequency maximum shifted by 3 cm-1 to the blue compared with the monomer. The result is explained by the predominance of chains and chain-like structures of the clusters in the photodissociation process. The chains consist of cross-like dimer sub-units

    Human Papillomavirus Type 16 Entry: Retrograde Cell Surface Transport along Actin-Rich Protrusions

    Get PDF
    The lateral mobility of individual, incoming human papillomavirus type 16 pseudoviruses (PsV) bound to live HeLa cells was studied by single particle tracking using fluorescence video microscopy. The trajectories were computationally analyzed in terms of diffusion rate and mode of motion as described by the moment scaling spectrum. Four distinct modes of mobility were seen: confined movement in small zones (30–60 nm in diameter), confined movement with a slow drift, fast random motion with transient confinement, and linear, directed movement for long distances. The directed movement was most prominent on actin-rich cell protrusions such as filopodia or retraction fibres, where the rate was similar to that measured for actin retrograde flow. It was, moreover, sensitive to perturbants of actin retrograde flow such as cytochalasin D, jasplakinolide, and blebbistatin. We found that transport along actin protrusions significantly enhanced HPV-16 infection in sparse tissue culture, cells suggesting a role for in vivo infection of basal keratinocytes during wound healing

    Quantitation of Human Seroresponsiveness to Merkel Cell Polyomavirus

    Get PDF
    Merkel cell carcinoma (MCC) is a relatively uncommon but highly lethal form of skin cancer. A majority of MCC tumors carry DNA sequences derived from a newly identified virus called Merkel cell polyomavirus (MCV or MCPyV), a candidate etiologic agent underlying the development of MCC. To further investigate the role of MCV infection in the development of MCC, we developed a reporter vector-based neutralization assay to quantitate MCV-specific serum antibody responses in human subjects. Our results showed that 21 MCC patients whose tumors harbored MCV DNA all displayed vigorous MCV-specific antibody responses. Although 88% (42/48) of adult subjects without MCC were MCV seropositive, the geometric mean titer of the control group was 59-fold lower than the MCC patient group (p<0.0001). Only 4% (2/48) of control subjects displayed neutralizing titers greater than the mean titer of the MCV-positive MCC patient population. MCC tumors were found not to express detectable amounts of MCV VP1 capsid protein, suggesting that the strong humoral responses observed in MCC patients were primed by an unusually immunogenic MCV infection, and not by viral antigen expressed by the MCC tumor itself. The occurrence of highly immunogenic MCV infection in MCC patients is unlikely to reflect a failure to control polyomavirus infections in general, as seroreactivity to BK polyomavirus was similar among MCC patients and control subjects. The results support the concept that MCV infection is a causative factor in the development of most cases of MCC. Although MCC tumorigenesis can evidently proceed in the face of effective MCV-specific antibody responses, a small pilot animal immunization study revealed that a candidate vaccine based on MCV virus-like particles (VLPs) elicits antibody responses that robustly neutralize MCV reporter vectors in vitro. This suggests that a VLP-based vaccine could be effective for preventing the initial establishment of MCV infection

    Deuteron-Proton Elastic Scattering at Intermediate Energies

    Full text link
    The deuteron-proton elastic scattering has been studied in the multiple scattering expansion formalism. The essential attention has been given to such relativistic problem as a deuteron wave function in a moving frame and transformation of spin states due to Wigner rotation. Parameterization of the nucleon-nucleon tt-matrix has been used to take the off-energy shell effects into account. The vector, Ay,A_y, and tensor, AyyA_{yy}, analyzing powers of the deuteron have been calculated at two deuteron kinetic energies: 395 MeV and 1200 MeV. The obtained results are compared with the experimental data

    CoreSOAR Core Degradation State-of-the Art Report Update: Conclusions [in press]

    Get PDF
    In 1991 the CSNI published the first State-of-the-Art Report on In-Vessel Core Degradation, which was updated to 1995 under the EC 3rd Framework programme. These covered phenomena, experimental programmes, material data, main modelling codes, code assessments, identification of modelling needs, and conclusions including the needs for further research. This knowledge was fundamental to such safety issues as in-vessel melt retention of the core, recovery of the core by water reflood, hydrogen generation and fission product release. In the last 20 years, there has been much progress in understanding, with major experimental series finished, e.g. the integral in-reactor Phébus FP tests, while others have many tests completed, e.g. the electrically-heated QUENCH series on reflooding degraded rod bundles, and one test using a debris bed. The small-scale PRELUDE/PEARL experiments study debris bed quench, while LIVE examines melt pool behaviour in the lower head using simulant materials. The integral severe accident modelling codes, such as MELCOR and MAAP (USA) and ASTEC (Europe), encapsulate current knowledge in a quantitative way. After two EC-funded projects on the SARNET network of excellence, continued in NUGENIA, it is timely to take stock of the vast range of knowledge and technical improvements gained in the experimental and modelling areas. The CoreSOAR project, in NUGENIA/SARNET, drew together the experience of 11 European partners to update the state of the art in core degradation, finishing at the end of 2018. The review covered knowledge of phenomena, available integral experiments, separate-effects data, modelling codes and code validation, then drawing overall conclusions and identifying needs for further research. The final report serves as a reference for current and future research programmes concerning core degradation in NUGENIA, in other EC research projects such as in Horizon2020 and for projects under the auspices of OECD/NEA/CSNI

    Sensory Measurements: Coordination and Standardization

    Get PDF
    Do sensory measurements deserve the label of “measurement”? We argue that they do. They fit with an epistemological view of measurement held in current philosophy of science, and they face the same kinds of epistemological challenges as physical measurements do: the problem of coordination and the problem of standardization. These problems are addressed through the process of “epistemic iteration,” for all measurements. We also argue for distinguishing the problem of standardization from the problem of coordination. To exemplify our claims, we draw on olfactory performance tests, especially studies linking olfactory decline to neurodegenerative disorders

    Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity.

    Get PDF
    Memory CD8 T cells can provide long-term protection against tumors, which depends on their enhanced proliferative capacity, self-renewal and unique metabolic rewiring to sustain cellular fitness. Specifically, memory CD8 T cells engage oxidative phosphorylation and fatty acid oxidation to fulfill their metabolic demands. In contrast, tumor-infiltrating lymphocytes (TILs) display severe metabolic defects, which may underlie their functional decline. Here, we show that overexpression of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis (MB), favors CD8 T cell central memory formation rather than resident memory generation. PGC-1α-overexpressing CD8 T cells persist and mediate more robust recall responses to bacterial infection or peptide vaccination. Importantly, CD8 T cells with enhanced PGC-1α expression provide stronger antitumor immunity in a mouse melanoma model. Moreover, TILs overexpressing PGC-1α maintain higher mitochondrial activity and improved expansion when rechallenged in a tumor-free host. Altogether, our findings indicate that enforcing mitochondrial biogenesis promotes CD8 T cell memory formation, metabolic fitness, and antitumor immunity in vivo

    Gender differences in the impact of family background on leaving the parental home

    Get PDF
    We address the question to what extent characteristics of the family of origin influence the timing of leaving the parental home and to what extent these effects differ between men and women. We use data from the Netherlands Kinship Panel Study to examine the effects of parental resources, atmosphere in the family of origin and family structure on leaving home to live without a partner and leaving home to live with a partner. The results indicate that a pleasant atmosphere in the parental home decreases the risk of leaving home and living in stepfamilies or single-parent families increases this risk. The availability of parental resources leads to a decreased risk of leaving home at young ages, but an increased risk at later ages. Many of these effects are found for both men and women and for both pathways out of the home. Furthermore, we find evidence that women are affected more strongly by family background characteristics than men are

    Re-thinking residential mobility: Linking lives through time and space.

    Get PDF
    This is the final version of the article. It first appeared from SAGE via http://dx.doi.org/10.1177/0309132515575417While researchers are increasingly re-conceptualizing international migration, far less attention has been devoted to re-thinking short-distance residential mobility and immobility. In this paper we harness the life course approach to propose a new conceptual framework for residential mobility research. We contend that residential mobility and immobility should be re-conceptualized as relational practices that link lives through time and space while connecting people to structural conditions. Re-thinking and re-assessing residential mobility by exploiting new developments in longitudinal analysis will allow geographers to understand, critique and address pressing societal challenges.Rory Coulter’s work on this paper was partly supported by an Economic and Social Research Council grant [ES/L009498/1]. Maarten van Ham’s contribution was supported by funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) / ERC Grant Agreement n. 615159 (ERC Consolidator Grant DEPRIVEDHOODS, Socio-spatial inequality, deprived neighbourhoods, and neighbourhood effects); and from the Marie Curie programme under the European Union’s Seventh Framework Programme (FP/2007–2013) / Career Integration Grant no. PCIG10-GA-2011-303728 (CIG Grant NBHCHOICE, Neighbourhood choice, neighbourhood sorting, and neighbourhood effects). Allan Findlay’s work was supported by an Economic and Social Research Council grant [ES/K007394/1]
    corecore