10 research outputs found

    Seewis hantavirus in common shrew (Sorex araneus) in Sweden

    Get PDF
    Background Rodent borne hantaviruses are emerging viruses infecting humans through inhalation. They cause hemorrhagic fever with renal syndrome and hemorrhagic cardiopulmonary syndrome. Recently, hantaviruses have been detected in other small mammals such as Soricomorpha (shrews, moles) and Chiroptera (bats), suggested as reservoirs for potential pandemic viruses and to play a role in the evolution of hantaviruses. It is important to study the global virome in different reservoirs, therefore our aim was to investigate whether shrews in Sweden carried any hantaviruses. Moreover, to accurately determine the host species, we developed a molecular method for identification of shrews. Method Shrews (n = 198), caught during 1998 in Sweden, were screened with a pan-hantavirus PCR using primers from a conserved region of the large genome segment. In addition to morphological typing of shrews, we developed a molecular based typing method using sequencing of the mitochondrial cytochrome C oxidase I (COI) and cytochrome B (CytB) genes. PCR amplified hantavirus and shrew fragments were sequenced and phylogenetically analysed. Results Hantavirus RNA was detected in three shrews. Sequencing identified the virus as Seewis hantavirus (SWSV), most closely related to previous isolates from Finland and Russia. All three SWSV sequences were retrieved from common shrews (Sorex araneus) sampled in Vasterbotten County, Sweden. The genetic assay for shrew identification was able to identify native Swedish shrew species, and the genetic typing of the Swedish common shrews revealed that they were most similar to common shrews from Russia. Conclusion We detected SWSV RNA in Swedish common shrew samples and developed a genetic assay for shrew identification based on the COI and CytB genes. This was the first report of presence of hantavirus in Swedish shrews

    Insurance Coverage of Accidental Damage

    No full text

    Evidence of orthohantavirus and leptospira infections in small mammals in an endemic area of Gampaha district in Sri Lanka

    Get PDF
    Background: Orthohantaviruses and leptospira are emerging zoonotic pathogens of high public health significance. The epidemiology of orthohantavirus infections and leptospirosis is similar and presents related clinical pictures in humans. However, a paucity of data on actual reservoir hosts for orthohantaviruses and leptospira exists. Therefore, this study aimed at determining the occurrence of orthohantaviruses and leptospira in small mammals captured in an endemic region of Sri Lanka. Methods: Rodents and shrews were morphologically and/or genetically identified using morphological keys and DNA barcoding techniques targeting the cytochrome oxidase b subunit gene (Cytb). Lung tissues and sera were subsequently analyzed for the presence of orthohantavirus RNA using qRT-PCR. Sera of rats were tested for IgG antibodies against orthohantaviruses and leptospira. Results: Forty-three (43) small mammals representing: Rattus (R.) rattus (black rat) or R. tanezumi (Asian rat), Suncus murinus (Asian house shrew), R. norvegicus (brown rat) and Mus musculus (house mouse) were investigated. No orthohantavirus RNA was detected from the lung tissue or serum samples of these animals. Elevated levels of IgG antibodies against Puumala orthohantavirus (PUUV) and/or Seoul orthohantavirus (SEOV) antigens were detected in sera of 28 (72%) out of the 39 rats analysed. Interestingly, 36 (92%) of the 39 rats also showed presence of anti leptospira-IgG antibodies in their serum, representing dual infection or dual exposure in 26/39 (66.7%) of examined rats. Conclusions: This project targets important public health questions concerning the occupational risk of orthohantavirus infections and/or leptospirosis in an endemic region of Sri Lanka. Most rats (72%) in our study displayed antibodies reacting to orthohantavirus NP antigens, related to PUUV and/or SEOV. No correlation between the orthohantavirus and leptospira IgG antibody levels were noticed. Finally, a combination of both morphological and DNA barcoding approaches revealed that several species of rats may play a role in the maintenance and transmission of orthohantavirus and leptospira in Sri Lanka

    Mosquito-borne Inkoo virus in northern Sweden - isolation and whole genome sequencing

    No full text
    Background: Inkoo virus (INKV) is a less known mosquito-borne virus belonging to Bunyaviridae, genus Orthobunyavirus, California serogroup. Studies indicate that INKV infection is mainly asymptomatic, but can cause mild encephalitis in humans. In northern Europe, the sero-prevalence against INKV is high, 41% in Sweden and 51% in Finland. Previously, INKV RNA has been detected in adult Aedes (Ae.) communis, Ae. hexodontus and Ae. punctor mosquitoes and Ae. communis larvae, but there are still gaps of knowledge regarding mosquito vectors and genetic diversity. Therefore, we aimed to determine the occurrence of INKV in its mosquito vector and characterize the isolates. Methods: About 125,000 mosquitoes were collected during a mosquito-borne virus surveillance in northern Sweden during the summer period of 2015. Of these, 10,000 mosquitoes were processed for virus isolation and detection using cell culture and RT-PCR. Virus isolates were further characterized by whole genome sequencing. Genetic typing of mosquito species was conducted by cytochrome oxidase subunit I (COI) gene amplification and sequencing (genetic barcoding). Results: Several Ae. communis mosquitoes were found positive for INKV RNA and two isolates were obtained. The first complete sequences of the small (S), medium (M), and large (L) segments of INKV in Sweden were obtained. Phylogenetic analysis showed that the INKV genome was most closely related to other INKV isolates from Sweden and Finland. Of the three INKV genome segments, the INKV M segment had the highest frequency of non-synonymous mutations. The overall G/C-content of INKV genes was low for the N/NSs genes (43.8–45.5%), polyprotein (Gn/Gc/NSm) gene (35.6%) and the RNA polymerase gene (33.8%) This may be due to the fact that INKV in most instances utilized A or T in the third codon position. Conclusions: INKV is frequently circulating in northern Sweden and Ae. communis is the key vector. The high mutation rate of the INKV M segment may have consequences on virulenc

    Detection of Sindbis and Inkoo Virus RNA in Genetically Typed Mosquito Larvae Sampled in Northern Sweden

    No full text
    Introduction: Mosquito-borne viruses have a widespread distribution across the globe and are known to pose serious threats to human and animal health. The maintenance and dissemination of these viruses in nature are driven through horizontal and vertical transmission. In the temperate climate of northern Sweden, there is a dearth of knowledge on whether mosquito-borne viruses that occur are transmitted transovarially. To gain a better understanding of mosquito-borne virus circulation and maintenance, mosquito larvae were sampled in northern Sweden during the first and second year after a large outbreak of Ockelbo disease in 2013 caused by Sindbis virus (SINV). Materials and Methods: A total of 3123 larvae were sampled during the summers of 2014 and 2015 at multiple sites in northern Sweden. The larvae were homogenized and screened for viruses using RT-PCR and sequencing. Species identification of selected larvae was performed by genetic barcoding targeting the cytochrome C oxidase subunit I gene. Results and Discussion: SINV RNA was detected in mosquito larvae of three different species, Ochlerotatus (Oc.) communis, Oc. punctor, and Oc. diantaeus. Inkoo virus (INKV) RNA was detected in Oc. communis larvae. This finding suggested that these mosquitoes could support transovarial transmission of SINV and INKV. Detection of virus in mosquito larva may serve as an early warning for emerging arboviral diseases and add information to epidemiological investigations before, during, and after outbreaks. Furthermore, our results demonstrated the relevance of genetic barcoding as an attractive and effective method for mosquito larva typing. However, further mosquito transmission studies are needed to ascertain the possible role of different mosquito species and developmental stages in the transmission cycle of arboviruses

    Molecular Diagnosis of Hemorrhagic Fever with Renal Syndrome Caused by Puumala Virus

    No full text
    Rodent-borne hantaviruses cause two severe acute diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia, and hantavirus pulmonary syndrome (HPS; also called hantavirus cardiopulmonary syndrome [HCPS]) in the Americas. Puumala virus (PUUV) is the most common causative agent of HFRS in Europe. Current routine diagnostic methods are based on serological analyses and can yield inconclusive results. Hantavirus-infected patients are viremic during the early phase of disease; therefore, detection of viral RNA genomes can be a valuable complement to existing serological methods. However, the high genomic sequence diversity of PUUV has hampered the development of molecular diagnostics, and currently no real-time reverse transcription- quantitative (RT)-PCR assay is available for routine diagnosis of HFRS. Here, we present a novel PUUV RT-PCR assay. The assay was validated for routine diagnosis of HFRS on samples collected in Sweden during the winter season from 2013 to 2014. The assay allowed detection of PUUV RNA in 98.7% of confirmed clinical HFRS samples collected within 8 days after symptomatic onset. In summary, this study shows that real-time RT-PCR can be a reliable alternative to serological tests during the early phase of HFRS
    corecore