49 research outputs found

    Joint analysis of stressors and ecosystem services to enhance restoration effectiveness

    Get PDF
    With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213841110/-/DCSupplementa

    Diffusion tensor imaging of frontal lobe white matter tracts in schizophrenia

    Get PDF
    We acquired diffusion tensor and structural MRI images on 103 patients with schizophrenia and 41 age-matched normal controls. The vector data was used to trace tracts from a region of interest in the anterior limb of the internal capsule to the prefrontal cortex. Patients with schizophrenia had tract paths that were significantly shorter in length from the center of internal capsule to prefrontal white matter. These tracts, the anterior thalamic radiations, are important in frontal-striatal-thalamic pathways. These results are consistent with findings of smaller size of the anterior limb of the internal capsule in patients with schizophrenia, diffusion tensor anisotropy decreases in frontal white matter in schizophrenia and hypothesized disruption of the frontal-striatal-thalamic pathway system

    The Ciliate Paramecium Shows Higher Motility in Non-Uniform Chemical Landscapes

    Get PDF
    We study the motility behavior of the unicellular protozoan Paramecium tetraurelia in a microfluidic device that can be prepared with a landscape of attracting or repelling chemicals. We investigate the spatial distribution of the positions of the individuals at different time points with methods from spatial statistics and Poisson random point fields. This makes quantitative the informal notion of “uniform distribution” (or lack thereof). Our device is characterized by the absence of large systematic biases due to gravitation and fluid flow. It has the potential to be applied to the study of other aquatic chemosensitive organisms as well. This may result in better diagnostic devices for environmental pollutants.University of Wisconsin--Milwaukee (SURF (Salary for Undergraduate Research Fellows) Award)National Science Foundation (U.S.) (grant DMS-016214

    The FAT10- and ubiquitin-dependent degradation machineries exhibit common and distinct requirements for MHC class I antigen presentation

    Get PDF
    Like ubiquitin (Ub), the ubiquitin-like protein FAT10 can serve as a signal for proteasome-dependent protein degradation. Here, we investigated the contribution of FAT10 substrate modification to MHC class I antigen presentation. We show that N-terminal modification of the human cytomegalovirus-derived pp65 antigen to FAT10 facilitates direct presentation and dendritic cell-mediated cross-presentation of the HLA-A2 restricted pp65495–503 epitope. Interestingly, our data indicate that the pp65 presentation initiated by either FAT10 or Ub partially relied on the 19S proteasome subunit Rpn10 (S5a). However, FAT10 distinguished itself from Ub in that it promoted a pp65 response which was not influenced by immunoproteasomes or PA28. Further divergence occurred at the level of Ub-binding proteins with NUB1 supporting the pp65 presentation arising from FAT10, while it exerted no effect on that initiated by Ub. Collectively, our data establish FAT10 modification as a distinct and alternative signal for facilitated MHC class I antigen presentation

    Joint analysis of stressors and ecosystem services to enhance restoration effectiveness

    Get PDF
    Publisher's version/PDFWith increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments

    Radiation Induced Cerebral Microbleeds in Pediatric Patients with Brain Tumors Treated with Proton Radiotherapy

    Get PDF
    Purpose Proton beam radiotherapy (PBT) has been increasingly utilized to treat pediatric brain tumors, however, limited information exists regarding radiation induced cerebral microbleeds (CMBs) among these patients. The purpose was to evaluate the incidence, risk factors, and imaging appearance of CMBs in pediatric patients with brain tumors treated with PBT. Methods A retrospective study was performed on 100 pediatric patients with primary brain tumors treated with PBT. CMBs were diagnosed by examining serial MRIs including susceptibility-weighted imaging. Radiation therapy plans were analyzed to determine doses to individual CMBs. Clinical records were used to determine risk factors associated with the development of CMBs in these patients. Results The mean age at time of PBT was 8.1 years. The median follow-up duration was 57 months. The median time to development of CMBs was 8 months (mean 11 months; range 3-28 months). The percentage of patients with CMBs was 43%, 66%, 80%, 81%, 83%, and 81% at 1-year, 2-years, 3-years, 4-year, 5-years, and greater than 5 years from completion of proton radiotherapy. The majority (87%) of CMBs were found in areas of brain exposed to ≥ 30 Gy. Risk factors included maximum radiotherapy dose (P=0.001), percentage and volume of brain exposed to ≥ 30 Gy (P=0.0004; P=0.0005), and patient age at time of PBT (P=0.0004). Chemotherapy was not a significant risk factor (P=0.35). No CMBs required surgical intervention. Conclusion CMBs develop in a high percentage of pediatric patients with brain tumors treated with proton radiotherapy within the first few years following treatment. Significant risk factors for development of CMBs include younger age at time of PBT, higher maximum radiotherapy dose, and higher percentage and volume of brain exposed to ≥ 30 Gy. These findings demonstrate similarities with CMBs that develop in pediatric brain tumor patients treated with photon radiotherapy
    corecore