1,765 research outputs found
γ-synuclein is a novel player in the control of body lipid metabolism
Peer reviewedPublisher PD
Flint Hills Forever Dependent On Horses
Horses have always been an essential element of the Flint Hills. Despite many changes during Chase County’s history, and continually innovative technology, horses will always be a key part of operating the world-renowned bluestem grasslands
Direct administration of 2-hydroxypropyl-beta-cyclodextrin into guinea pig cochleae: Effects on physiological and histological measurements
<p>Cochlear response measurements from two different animals made before (red) and after (blue) treatment with HPβCD (Panel A) and TTX (Panel B) to 80 dB SPL 4 kHz tone bursts. Cochlear response waveform maintained CAP-like morphology after HPβCD treatment, consistent with reduced mechanical drive to neural excitation (Panel B, blue). In contrast, response waveform is EPSP-like following TTX treatment. Unlike TTX, results from HPβCD do not support the hypothesis that the auditory nerve is a site of action for 13 mM HPβCD.</p
Implementation of higher-order absorbing boundary conditions for the Einstein equations
We present an implementation of absorbing boundary conditions for the
Einstein equations based on the recent work of Buchman and Sarbach. In this
paper, we assume that spacetime may be linearized about Minkowski space close
to the outer boundary, which is taken to be a coordinate sphere. We reformulate
the boundary conditions as conditions on the gauge-invariant
Regge-Wheeler-Zerilli scalars. Higher-order radial derivatives are eliminated
by rewriting the boundary conditions as a system of ODEs for a set of auxiliary
variables intrinsic to the boundary. From these we construct boundary data for
a set of well-posed constraint-preserving boundary conditions for the Einstein
equations in a first-order generalized harmonic formulation. This construction
has direct applications to outer boundary conditions in simulations of isolated
systems (e.g., binary black holes) as well as to the problem of
Cauchy-perturbative matching. As a test problem for our numerical
implementation, we consider linearized multipolar gravitational waves in TT
gauge, with angular momentum numbers l=2 (Teukolsky waves), 3 and 4. We
demonstrate that the perfectly absorbing boundary condition B_L of order L=l
yields no spurious reflections to linear order in perturbation theory. This is
in contrast to the lower-order absorbing boundary conditions B_L with L<l,
which include the widely used freezing-Psi_0 boundary condition that imposes
the vanishing of the Newman-Penrose scalar Psi_0.Comment: 25 pages, 9 figures. Minor clarifications. Final version to appear in
Class. Quantum Grav
Improved outer boundary conditions for Einstein's field equations
In a recent article, we constructed a hierarchy B_L of outer boundary
conditions for Einstein's field equations with the property that, for a
spherical outer boundary, it is perfectly absorbing for linearized
gravitational radiation up to a given angular momentum number L. In this
article, we generalize B_2 so that it can be applied to fairly general
foliations of spacetime by space-like hypersurfaces and general outer boundary
shapes and further, we improve B_2 in two steps: (i) we give a local boundary
condition C_2 which is perfectly absorbing including first order contributions
in 2M/R of curvature corrections for quadrupolar waves (where M is the mass of
the spacetime and R is a typical radius of the outer boundary) and which
significantly reduces spurious reflections due to backscatter, and (ii) we give
a non-local boundary condition D_2 which is exact when first order corrections
in 2M/R for both curvature and backscatter are considered, for quadrupolar
radiation.Comment: accepted Class. Quant. Grav. numerical relativity special issue; 17
pages and 1 figur
Schwarzschild Tests of the Wahlquist-Estabrook-Buchman-Bardeen Tetrad Formulation for Numerical Relativity
A first order symmetric hyperbolic tetrad formulation of the Einstein
equations developed by Estabrook and Wahlquist and put into a form suitable for
numerical relativity by Buchman and Bardeen (the WEBB formulation) is adapted
to explicit spherical symmetry and tested for accuracy and stability in the
evolution of spherically symmetric black holes (the Schwarzschild geometry).
The lapse and shift which specify the evolution of the coordinates relative to
the tetrad congruence are reset at frequent time intervals to keep the
constant-time hypersurfaces nearly orthogonal to the tetrad congruence and the
spatial coordinate satisfying a kind of minimal rate of strain condition. By
arranging through initial conditions that the constant-time hypersurfaces are
asymptotically hyperbolic, we simplify the boundary value problem and improve
stability of the evolution. Results are obtained for both tetrad gauges
(``Nester'' and ``Lorentz'') of the WEBB formalism using finite difference
numerical methods. We are able to obtain stable unconstrained evolution with
the Nester gauge for certain initial conditions, but not with the Lorentz
gauge.Comment: (accepted by Phys. Rev. D) minor changes; typos correcte
Explicit solution of the linearized Einstein equations in TT gauge for all multipoles
We write out the explicit form of the metric for a linearized gravitational
wave in the transverse-traceless gauge for any multipole, thus generalizing the
well-known quadrupole solution of Teukolsky. The solution is derived using the
generalized Regge-Wheeler-Zerilli formalism developed by Sarbach and Tiglio.Comment: 9 pages. Minor corrections, updated references. Final version to
appear in Class. Quantum Gra
- …