20 research outputs found

    Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    Get PDF
    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation

    Evaluation of ESA CCI prototype land cover map at 20m

    Get PDF
    In September 2017, the ESA CCI Land Cover Team released a prototype land cover (LC) map at 20 m resolution over Africa for the year 2016. This is the first LC map produced at such a high resolution covering an entire continent for the year 2016. To help improve the quality of this product, we have assessed its overall accuracy and identified regions where the map should be improved. We have compared the product against two independent datasets developed within the Copernicus Global Land Services (CGLS): a reference land cover dataset at a 10 m resolution, which has been used as training data to produce the LC map at 100 m over Africa for the year 2015 (http://land.copernicus.eu/global/products/lc); and an independent validation dataset at a 10 m resolution, which has been developed by CGLS for independent assessment of land cover maps at resolutions finer than 100 m. According to our estimates, overall accuracy of the African CCI LC at 20 m is approximately 65%. We have highlighted regions where the spatial distribution of such classes as shrubs, crops and trees should be improved before the map at 20 m could be used as input for research questions, e.g. conservation of biodiversity, crop monitoring and climate modelling

    Global forest management data for 2015 at a 100 m resolution

    Get PDF
    Spatially explicit information on forest management at a global scale is critical for understanding the status of forests, for planning sustainable forest management and restoration, and conservation activities. Here, we produce the first reference data set and a prototype of a globally consistent forest management map with high spatial detail on the most prevalent forest management classes such as intact forests, managed forests with natural regeneration, planted forests, plantation forest (rotation up to 15 years), oil palm plantations, and agroforestry. We developed the reference dataset of 226 K unique locations through a series of expert and crowdsourcing campaigns using Geo-Wiki (https://www.geo-wiki.org/). We then combined the reference samples with time series from PROBA-V satellite imagery to create a global wall-to-wall map of forest management at a 100 m resolution for the year 2015, with forest management class accuracies ranging from 58% to 80%. The reference data set and the map present the status of forest ecosystems and can be used for investigating the value of forests for species, ecosystems and their services

    Methodology for generating a global forest management layer

    Get PDF
    The first ever global map of forest management was generated based on remote sensing data. To collect training data, we launched a series of Geo-Wiki (https://www.geo-wiki.org/) campaigns involving forest experts from different world regions, to explore which information related to forest management could be collected by visual interpretation of very high-resolution images from Google Maps and Microsoft Bing, Sentinel time series and normalized difference vegetation index (NDVI) profiles derived from Google Earth Engine. A machine learning technique was then used with the visually interpreted sample (280K locations) as a training dataset to classify PROBA-V satellite imagery. Finally, we obtained a global wall-to-wall map of forest management at a 100m resolution for the year 2015. The map includes classes such as intact forests; forests with signs of management, including logging; planted forests; woody plantations with a rotation period up to 15 years; oil palm plantations; and agroforestry. The map can be used to deliver further information about forest ecosystems, protected and observed forest status changes, biodiversity assessments, and other ecosystem-related aspects

    Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    Get PDF
    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given
    corecore