6,460 research outputs found

    Assessment and preliminary design of an energy buffer for regenerative braking in electric vehicles

    Get PDF
    Energy buffer systems, capable of storing the vehicle energy during braking and reusing this stored energy during acceleration, were examined. Some of these buffer systems when incorporated in an electric vehicle would result in an improvement in the performance and range under stop and go driving conditions. Buffer systems considered included flywheels, hydropneumatic, pneumatic, spring, and regenerative braking. Buffer ranking and rating criteria were established. Buffer systems were rated based on predicted range improvements, consumer acceptance, driveability, safety, reliability and durability, and initial and life cycle costs. A hydropneumatic buffer system was selected

    On the equivalence of two deformation schemes in quantum field theory

    Get PDF
    Two recent deformation schemes for quantum field theories on the two-dimensional Minkowski space, making use of deformed field operators and Longo-Witten endomorphisms, respectively, are shown to be equivalent.Comment: 14 pages, no figure. The final version is available under Open Access. CC-B

    Effect of turbulence on electron cyclotron current drive and heating in ITER

    Get PDF
    Non-linear local electromagnetic gyrokinetic turbulence simulations of the ITER standard scenario H-mode are presented for the q=3/2 and q=2 surfaces. The turbulent transport is examined in regions of velocity space characteristic of electrons heated by electron cyclotron waves. Electromagnetic fluctuations and sub-dominant micro-tearing modes are found to contribute significantly to the transport of the accelerated electrons, even though they have only a small impact on the transport of the bulk species. The particle diffusivity for resonant passing electrons is found to be less than 0.15 m^2/s, and their heat conductivity is found to be less than 2 m^2/s. Implications for the broadening of the current drive and energy deposition in ITER are discussed.Comment: Letter, 5 pages, 5 figures, for submission to Nuclear Fusio

    Spectral triples and the super-Virasoro algebra

    Get PDF
    We construct infinite dimensional spectral triples associated with representations of the super-Virasoro algebra. In particular the irreducible, unitary positive energy representation of the Ramond algebra with central charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of even theta-summable spectral triples with non-zero Fredholm index. The irreducible unitary positive energy representations of the Neveu-Schwarz algebra give rise to nets of even theta-summable generalised spectral triples where there is no Dirac operator but only a superderivation.Comment: 27 pages; v2: a comment concerning the difficulty in defining cyclic cocycles in the NS case have been adde

    Continuous Spectrum of Automorphism Groups and the Infraparticle Problem

    Full text link
    This paper presents a general framework for a refined spectral analysis of a group of isometries acting on a Banach space, which extends the spectral theory of Arveson. The concept of continuous Arveson spectrum is introduced and the corresponding spectral subspace is defined. The absolutely continuous and singular-continuous parts of this spectrum are specified. Conditions are given, in terms of the transposed action of the group of isometries, which guarantee that the pure-point and continuous subspaces span the entire Banach space. In the case of a unitarily implemented group of automorphisms, acting on a C∗C^*-algebra, relations between the continuous spectrum of the automorphisms and the spectrum of the implementing group of unitaries are found. The group of spacetime translation automorphisms in quantum field theory is analyzed in detail. In particular, it is shown that the structure of its continuous spectrum is relevant to the problem of existence of (infra-)particles in a given theory.Comment: 31 pages, LaTeX. As appeared in Communications in Mathematical Physic

    The linear tearing instability in three dimensional, toroidal gyrokinetic simulations

    Get PDF
    Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro kinetic turbulence code, GKW . The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate and frequency of the mode were investigated by varying the current profile, collisionality and the pressure gradients. Both collision-less and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absense of a pressure gradient is observed which is attributed to toroidal finite Larmor-radius effects. When a pressure gradient is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However the island rotation reverses direction at high collisionality. The growth rate is found to follow a η1/7\eta^{1/7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability using resistive MHD theory, however a modification due to toroidal coupling and pressure effects is seen
    • …
    corecore