186 research outputs found

    Topologically Alice Strings and Monopoles

    Full text link
    Symmetry breaking can produce ``Alice'' strings, which alter scattered charges and carry monopole number and charge when twisted into loops. Alice behavior arises algebraically, when strings obstruct unbroken symmetries -- a fragile criterion. We give a topological criterion, compelling Alice behavior or deforming it away. Our criterion, that \pi_o(H) acts nontrivially on \pi_1(H), links topologically Alice strings to topological monopoles. We twist topologically Alice loops to form monopoles. We show that Alice strings of condensed matter systems (nematic liquid crystals, helium 3A, and related non-chiral Bose condensates and amorphous chiral superconductors) are topologically Alice, and support fundamental monopole charge when twisted into loops. Thus they might be observed indirectly, not as strings, but as loop-like point defects. We describe other models, showing Alice strings failing our topological criterion; and twisted Alice loops supporting deposited, but not fundamental, monopole number.Comment: 2 figures; this paper consolidates preprints hep-th/0304161 and hep-th/0304162, to appear in Phys. Rev.

    New Lump-like Structures in Scalar-field Models

    Full text link
    In this work we investigate lump-like solutions in models described by a single real scalar field. We start considering non-topological solutions with the usual lump-like form, and then we study other models, where the bell-shape profile may have varying amplitude and width, or develop a flat plateau at its top, or even induce a lump on top of another lump. We suggest possible applications where these exotic solutions might be used in several distinct branches of physics.Comment: REvTex4, twocolumn, 10 pages, 9 figures; new reference added, to appear in EPJ

    Defective Erythrocyte Pyruvate Kinase with Impaired Kinetics and Reduced Optimal Activity

    Full text link
    A unique mutant form of erythrocyte pyruvate kinase has been found associated with chronic haemolytic anaemia in a child who is apparently doubly heterozygous for the mutant isoenzyme and for pyruvate kinase deficiency of the classical quantitative type. Clinical and laboratory findings conformed closely to those typically observed in homozygous pyruvate kinase deficiency anaemia. Assayed in fresh haemolysates, the isoenzyme exhibited reduced optimal activity ( c 45% of normal) and an increased Michaelis constant for phosphoenolpyruvate (four to five times greater than normal). The kinetic anomaly was only partially corrected by activation with fructose-1,6-disphosphate. Despite some common characteristics, this isoenzyme appears distinct from others reported in the literature and lends support to the polymorphous nature of heritable baemolytic anaemias secondary to defective pyruvate kinase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73844/1/j.1365-2141.1972.tb05713.x.pd

    Quantum Creation of an Open Inflationary Universe

    Get PDF
    We discuss a dramatic difference between the description of the quantum creation of an open universe using the Hartle-Hawking wave function and the tunneling wave function. Recently Hawking and Turok have found that the Hartle-Hawking wave function leads to a universe with Omega = 0.01, which is much smaller that the observed value of Omega > 0.3. Galaxies in such a universe would be about 1010810^{10^8} light years away from each other, so the universe would be practically structureless. We will argue that the Hartle-Hawking wave function does not describe the probability of the universe creation. If one uses the tunneling wave function for the description of creation of the universe, then in most inflationary models the universe should have Omega = 1, which agrees with the standard expectation that inflation makes the universe flat. The same result can be obtained in the theory of a self-reproducing inflationary universe, independently of the issue of initial conditions. However, there exist two classes of models where Omega may take any value, from Omega > 1 to Omega << 1.Comment: 23 pages, 4 figures. New materials are added. In particular, we show that boundary terms do not help to solve the problem of unacceptably small Omega in the new model proposed by Hawking and Turok in hep-th/9803156. A possibility to solve the cosmological constant problem in this model using the tunneling wave function is discusse

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV

    Get PDF
    PHENIX has measured the centrality dependence of charged hadron p_T spectra from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction of the contribution from hard scattering to high p_T hadron production. For central collisions the yield at high p_T is shown to be suppressed compared to binary nucleon-nucleon collision scaling of p+p data. This suppression is monotonically increasing with centrality, but most of the change occurs below 30% centrality, i.e. for collisions with less than about 140 participating nucleons. The observed p_T and centrality dependence is consistent with the particle production predicted by models including hard scattering and subsequent energy loss of the scattered partons in the dense matter created in the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to Phys. Lett. B. Revised to address referee concerns. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are publicly available at http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore