58 research outputs found

    Synaptic boutons sizes are tuned to best fit their physiological performances

    Get PDF
    To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain as well the rather astonishing motor patterns which we observed within in vivo recordings which underlie peristaltic contractionsas well as the shape of the EPSPs at different forms of long-term stimulation, presented both here, at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva (c.f. Figure 1). To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po), the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. We can present astonishing similar results of experimental and simulation data which could be gained in particular without any data fitting, however based only on biophysical values which could be taken from different experimental results. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues

    Synaptic bouton sizes are tuned to best fit their physiological performances : poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011, Stockholm, Sweden, 23 - 28 July 2011

    Get PDF
    Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain the rather astonishing motor patterns presented here which we observed within in vivo recordings which underlie peristaltic contractions at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva. To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po),the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues

    Synaptic bouton sizes are tuned to best fit their physiological performances

    Get PDF
    Poster presentation from Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden. 23-28 July 2011. To truly appreciate the myriad of events which relate synaptic function and vesicle dynamics, simulations should be done in a spatially realistic environment. This holds true in particular in order to explain the rather astonishing motor patterns presented here which we observed within in vivo recordings which underlie peristaltic contractions at a well characterized synapse, the neuromuscular junction (NMJ) of the Drosophila larva. To this end, we have employed a reductionist approach and generated three dimensional models of single presynaptic boutons at the Drosophila larval NMJ. Vesicle dynamics are described by diffusion-like partial differential equations which are solved numerically on unstructured grids using the uG platform. In our model we varied parameters such as bouton-size, vesicle output probability (Po), stimulation frequency and number of synapses, to observe how altering these parameters effected bouton function. Hence we demonstrate that the morphologic and physiologic specialization maybe a convergent evolutionary adaptation to regulate the trade off between sustained, low output, and short term, high output, synaptic signals. There seems to be a biologically meaningful explanation for the co-existence of the two different bouton types as previously observed at the NMJ (characterized especially by the relation between size and Po),the assigning of two different tasks with respect to short- and long-time behaviour could allow for an optimized interplay of different synapse types. As a side product, we demonstrate how advanced methods from numerical mathematics could help in future to resolve also other difficult experimental neurobiological issues

    Metastatic renal cell cancer treatments: An indirect comparison meta-analysis

    Get PDF
    Abstract Background Treatment for metastatic renal cell cancer (mRCC) has advanced dramatically with understanding of the pathogenesis of the disease. New treatment options may provide improved progression-free survival (PFS). We aimed to determine the relative effectiveness of new therapies in this field. Methods We conducted comprehensive searches of 11 electronic databases from inception to April 2008. We included randomized trials (RCTs) that evaluated bevacizumab, sorafenib, and sunitinib. Two reviewers independently extracted data, in duplicate. Our primary outcome was investigator-assessed PFS. We performed random-effects meta-analysis with a mixed treatment comparison analysis. Results We included 3 bevacizumab (2 of bevacizumab plus interferon-a [IFN-a]), 2 sorafenib, 1 sunitinib, and 1 temsirolimus trials (total n = 3,957). All interventions offer advantages for PFS. Using indirect comparisons with interferon-α as the common comparator, we found that sunitinib was superior to both sorafenib (HR 0.58, 95% CI, 0.38–0.86, P = < 0.001) and bevacizumab + IFN-a (HR 0.75, 95% CI, 0.60–0.93, P = 0.001). Sorafenib was not statistically different from bevacizumab +IFN-a in this same indirect comparison analysis (HR 0.77, 95% CI, 0.52–1.13, P = 0.23). Using placebo as the similar comparator, we were unable to display a significant difference between sorafenib and bevacizumab alone (HR 0.81, 95% CI, 0.58–1.12, P = 0.23). Temsirolimus provided significant PFS in patients with poor prognosis (HR 0.69, 95% CI, 0.57–0.85). Conclusion New interventions for mRCC offer a favourable PFS for mRCC compared to interferon-α and placebo

    Can Survival Prediction Be Improved By Merging Gene Expression Data Sets?

    Get PDF
    BACKGROUND:High-throughput gene expression profiling technologies generating a wealth of data, are increasingly used for characterization of tumor biopsies for clinical trials. By applying machine learning algorithms to such clinically documented data sets, one hopes to improve tumor diagnosis, prognosis, as well as prediction of treatment response. However, the limited number of patients enrolled in a single trial study limits the power of machine learning approaches due to over-fitting. One could partially overcome this limitation by merging data from different studies. Nevertheless, such data sets differ from each other with regard to technical biases, patient selection criteria and follow-up treatment. It is therefore not clear at all whether the advantage of increased sample size outweighs the disadvantage of higher heterogeneity of merged data sets. Here, we present a systematic study to answer this question specifically for breast cancer data sets. We use survival prediction based on Cox regression as an assay to measure the added value of merged data sets. RESULTS:Using time-dependent Receiver Operating Characteristic-Area Under the Curve (ROC-AUC) and hazard ratio as performance measures, we see in overall no significant improvement or deterioration of survival prediction with merged data sets as compared to individual data sets. This apparently was due to the fact that a few genes with strong prognostic power were not available on all microarray platforms and thus were not retained in the merged data sets. Surprisingly, we found that the overall best performance was achieved with a single-gene predictor consisting of CYB5D1. CONCLUSIONS:Merging did not deteriorate performance on average despite (a) The diversity of microarray platforms used. (b) The heterogeneity of patients cohorts. (c) The heterogeneity of breast cancer disease. (d) Substantial variation of time to death or relapse. (e) The reduced number of genes in the merged data sets. Predictors derived from the merged data sets were more robust, consistent and reproducible across microarray platforms. Moreover, merging data sets from different studies helps to better understand the biases of individual studies and can lead to the identification of strong survival factors like CYB5D1 expression

    Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): a double-blind, randomised controlled trial

    Get PDF
    Background Third-generation aromatase inhibitors are more effective than tamoxifen for preventing recurrence in postmenopausal women with hormone-receptor-positive invasive breast cancer. However, it is not known whether anastrozole is more effective than tamoxifen for women with hormone-receptor-positive ductal carcinoma in situ (DCIS). Here, we compare the efficacy of anastrozole with that of tamoxifen in postmenopausal women with hormone-receptor-positive DCIS. Methods In a double-blind, multicentre, randomised placebo-controlled trial, we recruited women who had been diagnosed with locally excised, hormone-receptor-positive DCIS. Eligible women were randomly assigned in a 1:1 ratio by central computer allocation to receive 1 mg oral anastrozole or 20 mg oral tamoxifen every day for 5 years. Randomisation was stratified by major centre or hub and was done in blocks (six, eight, or ten). All trial personnel, participants, and clinicians were masked to treatment allocation and only the trial statistician had access to treatment allocation. The primary endpoint was all recurrence, including recurrent DCIS and new contralateral tumours. All analyses were done on a modified intention-to-treat basis (in all women who were randomised and did not revoke consent for their data to be included) and proportional hazard models were used to compute hazard ratios and corresponding confidence intervals. This trial is registered at the ISRCTN registry, number ISRCTN37546358. Results Between March 3, 2003, and Feb 8, 2012, we enrolled 2980 postmenopausal women from 236 centres in 14 countries and randomly assigned them to receive anastrozole (1449 analysed) or tamoxifen (1489 analysed). Median follow-up was 7·2 years (IQR 5·6–8·9), and 144 breast cancer recurrences were recorded. We noted no statistically significant difference in overall recurrence (67 recurrences for anastrozole vs 77 for tamoxifen; HR 0·89 [95% CI 0·64–1·23]). The non-inferiority of anastrozole was established (upper 95% CI <1·25), but its superiority to tamoxifen was not (p=0·49). A total of 69 deaths were recorded (33 for anastrozole vs 36 for tamoxifen; HR 0·93 [95% CI 0·58–1·50], p=0·78), and no specific cause was more common in one group than the other. The number of women reporting any adverse event was similar between anastrozole (1323 women, 91%) and tamoxifen (1379 women, 93%); the side-effect profiles of the two drugs differed, with more fractures, musculoskeletal events, hypercholesterolaemia, and strokes with anastrozole and more muscle spasm, gynaecological cancers and symptoms, vasomotor symptoms, and deep vein thromboses with tamoxifen. Conclusions No clear efficacy differences were seen between the two treatments. Anastrozole offers another treatment option for postmenopausal women with hormone-receptor-positive DCIS, which may be be more appropriate for some women with contraindications for tamoxifen. Longer follow-up will be necessary to fully evaluate treatment differences

    Anastrozole versus tamoxifen for the prevention of locoregional and contralateral breast cancer in postmenopausal women with locally excised ductal carcinoma in situ (IBIS-II DCIS): A double-blind, randomised controlled trial

    Get PDF

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus KjĂžller, Tamir Klein, Michael Kleyer, Jitka KlimeĆĄovĂĄ, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf KĂŒhn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan LlusiĂ , Madelon Lohbeck, Álvaro LĂłpez-GarcĂ­a, Gabriela Lopez-Gonzalez, Zdeƈka LososovĂĄ, FrĂ©dĂ©rique Louault, BalĂĄzs A. LukĂĄcs, Petr LukeĆĄ, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki MĂ€kelĂ€, Harri MĂ€kinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina MartĂ­nez-Garza, Jordi MartĂ­nez-Vilalta, Tereza MaĆĄkovĂĄ, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, CĂ©line Meredieu, Julie Messier, Ilona MĂ©szĂĄros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila MolnĂĄr V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka MoravcovĂĄ, Alvaro Moreno-MartĂ­nez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina MĂŒller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ülo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Öllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis PĂ€rtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, ValĂ©rio D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr PyĆĄek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime RĂ©jou-MĂ©chain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja RĂŒger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-GarcĂ­a, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun SiebenkĂ€s, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, GrĂ©gory Sonnier, Mia Vedel SĂžrensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana SvitkovĂĄ, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, RubĂ©n Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, LubomĂ­r TichĂœ, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, PĂ©ter Török, Tonantzin Tarin, JosĂ© M. Torres-Ruiz, BĂ©la TĂłthmĂ©rĂ©sz, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim AndrĂ© Vanselow, Angelica VĂ„rhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime VillacĂ­s, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, KĂĄtia Janaina Zanini, Amy E. Zanne, David ZelenĂœ, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia ZiemiƄska, Chad R. Zirbel, Georg Zizka, IriĂ© Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS ‘Climat, Environnement et SociĂ©tĂ©'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc

    Tour of Grant Creek Flood Control and Stream Naturalization Project

    No full text
    The Grant Creek tour, led by Dan Harmon, project manager for the Grant Creek Project, and Bill Bucher, will start in its headwaters and follow the creek downstream discussing problems and potential solutions along the way. Grant Creek flows south into the Missoula Valley from the foothills of the Rattlesnake mountains northwest of the City of Missoula. The creek’s headwaters are in national forest and private ranchlands. However, residential and commercial development has grown rapidly where the creek approaches I90. To protect this development, the creek has been confined by a berm, restricting it from much of its former floodplain. The creek flows under I90 in a culvert and then onto the floor of the valley where much of the creek’s flow is lost to infiltration into its alluvial fan. Below I-90 the creek does not flow much of the year. The creek generally follows its historic path but has been straightened and channelized. From West Broadway to the Clark Fork Floodplain, Grant Creek flows across flat agricultural land that is undergoing rapid development. The creek flows near the Mullan Trail subdivision near Mullan Road, where high groundwater from leaking irrigation ditches is thought to contribute to flooding of the subdivision. The creek passes under Mullan Road in a culvert and flows through ranchland on the Clark Fork floodplain to the Clark Fork. Culverts at W. Broadway, Mullan Trail and to a lesser extent I-90 are fish passage barriers. Missoula County seeks to develop a project that will reduce flooding, improve fish habitat and passage, and improve recreational & aesthetic opportunities. HDR has designed a project to address these goals. Sites that will be visited include: a bird sanctuary and the Rocky Mountain Elk Foundation development on upper Grant Creek, culverts at I90, W. Broadway, and Mullen Road that restrict fish passage, and the site of the lower Grant Creek flood control and habitat enhancement project. If time permits, after the Grant Creek tour, we will visit one or two other less developed creeks that lie in the path of Missoula’s development. Here we will discuss what can be done to protect these creeks from the fate of Pattee and Grant Creeks. The downloadable file is video from this tour. The total run time is 54 minutes, 33 seconds. It is an .mp4 file. It is a very large file (1.45 GB) and may take several minutes to download. Symposium videos were produced by Missoula Community Access TV (MCAT)
    • 

    corecore