288 research outputs found

    Aspects of symmetry breaking in SO(10) GUTs

    Full text link
    I review some recent results on the Higgs sector of minimal SO(10) grand unified theories both with and without supersymmetry. It is shown that nonsupersymmetric SO(10) with just one adjoint triggering the first stage of the symmetry breaking does provide a successful gauge unification when radiative corrections are taken into account in the scalar potential, while in the supersymmetric case it is argued that the troubles in achieving a phenomenologically viable breaking with representations up to the adjoint are overcome by considering the flipped SO(10) embedding of the hypercharge.Comment: 8 pages, 1 figure; prepared for the proceedings of DISCRETE'10 - Symposium on Prospects in the Physics of Discrete Symmetrie

    Low Q 2 boundary conditions for DGLAP equations dictated by quantum statistical mechanics

    Get PDF
    We discuss the role of quantum statistical mechanics in the description of the parton distribution functions in the proton. It provides the low Q 2 boundary conditions for DGLAP equations in terms of Fermi–Dirac and Bose–Einstein functions of the fractional momentum variable x. The successful comparison with experimental data on both the unpolarised and polarised deep inelastic structure functions is reviewed. We argue that the statistical approach for the nucleon parton distributions functions has the nice feature that the free model parameters are fixed from data with high statistics and small systematic uncertainties, providing a strong constraint on the information not supplied by the experiments

    Recent tests for the statistical parton distributions

    Get PDF
    We compare some recent experimental results obtained at DESY, SLAC and Jefferson Lab., with the predictions of the statistical model, we have previously proposed. The result of this comparison is very satisfactory.Comment: 12 pages, 6 eps figures, version to appear in Mod. Phys. Lett.

    One-loop effective potential for SO(10) GUT theories in de Sitter space

    Full text link
    Zeta-function regularization is applied to evaluate the one-loop effective potential for SO(10) grand-unified theories in de Sitter cosmologies. When the Higgs scalar field belongs to the 210-dimensional irreducible representation of SO(10), attention is focused on the mass matrix relevant for the SU(3)xSU(2)xU(1) symmetry-breaking direction, to agree with low-energy phenomenology of the particle-physics standard model. The analysis is restricted to those values of the tree-level-potential parameters for which the absolute minima of the classical potential have been evaluated. As shown in the recent literature, such minima turn out to be SO(6)xSO(4)- or SU(3)xSU(2)xSU(2)xU(1)-invariant. Electroweak phenomenology is more naturally derived, however, from the former minima. Hence the values of the parameters leading to the alternative set of minima have been discarded. Within this framework, flat-space limit and general form of the one-loop effective potential are studied in detail by using analytic and numerical methods. It turns out that, as far as the absolute-minimum direction is concerned, the flat-space limit of the one-loop calculation about a de Sitter background does not change the results previously obtained in the literature, where the tree-level potential in flat space-time was studied. Moreover, when curvature effects are no longer negligible in the one-loop potential, it is found that the early universe remains bound to reach only the SO(6)xSO(4) absolute minimum.Comment: 25 pages, plain Tex, plus Latex file of the tables appended at the end. Published in Classical and Quantum Gravity, Vol. 11, pp. 2031-2044, August 199

    Supernova Neutrino Energy Spectra and the MSW Effect

    Get PDF
    The distortions in the thermal energy spectra for neutrinos produced in a supernova when a resonant oscillation, MSW effect, occurs are determined. In order to show this effect for some relevant and representative examples of unified gauge models, we have chosen SO(10)SO(10), and SU(5)SUSYSU(5)_{SUSY}, SO(10)SUSYSO(10)_{SUSY} with a particular scheme for fermion masses (DHR model). The analysis has been performed for two choices of neutrinos parameters, predicted by the above models, and capable to explain the solar neutrino problem. In both cases one observes a strong distortion in the electron neutrino energy spectrum. This effect, computed for a wide range of SO(10)SUSYSO(10)_{SUSY} models has produced the same results of the previous supersymmetric ones.Comment: 14 pages, plain LaTeX, 6 figures, revised version to be published in Z. Phys.

    Octet Quark Contents from SU(3) Flavor Symmetry

    Full text link
    With the parametrization of parton distribution functions (PDFs) of the proton by Soffer \textit{et al.}, we extend the valence quark contents to other octet baryons by utilizing SU(3) flavor symmetry. We find the method practically useful. Fragmentation functions (FFs) are further obtained through the phenomenological Gribov-Lipatov relation at the x→1x \to 1 region. Our results are compared with different models, and these different predictions can be discriminated by upcoming experiments.Comment: 6 pages, 5 figures, final version for journal publicatio

    A Selection Rule for Multiquark Decays

    Full text link
    By assuming SU(6)_cs symmetry for pentaquark decays one finds a selection rule, which strongly reduces the number of states able to decay into a baryon and a meson final state and allows an intriguing identification for the Theta^+ particle recently discovered with the prediction of a narrow width.Comment: 10 pages, no figure

    Semiclassical Gravitational Effects in de Sitter Space at Finite Temperature

    Full text link
    In the framework of finite temperature conformal scalar field theory on de Sitter space-time the linearized Einstein equations for the renormalized stress tensor are exactly solved. In this theory quantum field fluctuations are concentrated near two spheres of the de Sitter radius, propagating as light wave fronts. Related cosmological aspects are shortly discussed. The analysis, performed for flat expanding universe, shows exponential damping of the back-reaction effects far from these spherical objects. The obtained solutions for the semiclassical Einstein equations in de Sitter background can be straightforwardly extended also to the anti-de Sitter geometry.Comment: pag.14, 1 figure in poscript file available under request, Preprint DSF-8/9

    The Hilbert basis method for D-flat directions and the superpotential

    Get PDF
    We discuss, using the Hilbert basis method, how to efficiently construct a complete basis for D-flat directions in supersymmetric Abelian and non-Abelian gauge theories. We extend the method to discrete (R and non-R) symmetries. This facilitates the construction of a basis of all superpotential terms in a theory with given symmetries.Comment: 11 pages; a related mathematica code can be found at http://einrichtungen.ph.tum.de/T30e/codes/NonAbelianHilbert
    • …
    corecore