316 research outputs found

    Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli.

    Get PDF
    Can a transcriptional activator known to bend DNA be functionally replaced by a sequence-directed bend in Escherichia coli? To investigate this question, a partially truncated promoter was used, deleted of its -35 region and of its CRP binding site, leaving only two Pribnow boxes as functional elements. Synthetic and naturally occurring curved DNA sequences introduced upstream from these elements could restore transcription at either one of the two natural starts. Some of these hybrid promoters turned out to be more efficient than the CRP activated wild-type gal promoter in vivo. Control experiments performed with very similar sequences devoid of any curvature produced weak promoters only. Minimal changes in the location of the centre of curvature or perturbation in the amount of curvature strongly affected the level of expression. No significant stimulation of transcription could be detected in vitro. Furthermore, both gal P1 and P2 starts could be activated in vivo but also in vitro via a properly positioned CRP binding site. This partial analogy suggests that bending induced by the cAMP-CRP complex upon binding to its site may be biologically relevant to the mechanism of transcriptional activation

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Modes of Foreign Entry under Asymmetric Information about Potential Technology Spillovers

    Get PDF
    This paper studies the effect of technology spillovers on the entry decision of a multinational enterprise into a foreign market. Two alternative entry modes for a foreign direct investment are considered: Greenfield investment versus acquisition. We find that with quantity competition a spillover makes acquisitions less attractive, while with price competition acquisitions become more attractive. Asymmetric information about potential spillovers always reduces the number of acquisitions independently of whether the host country or the entrant has private information. Interestingly, we find that asymmetric information always hurts the entrant, while it sometimes is in favor of the host country

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    The radicalization of democracy: conflict, social movements and terrorism

    Get PDF
    The idea of democracy is being championed across the world, with some fifty new countries embracing this type of political system between 1974 and 2011 (Freedom House, 2016). Simultaneously, however, dissatisfaction has grown due to the perceived incapacity of democracy to deal with collective problems, hence the necessity to reconfigure it and redraw some of its principles. This paper links the analysis of the recent evolution of democratic systems with the trajectory of socio-political conflicts and the changing features of contemporary terrorism. It examines, therefore, two intertwined phenomena, namely the radicalization of democracy and the radicalization of the other. It concludes by stressing that encouraging dissent and heeding contentious claims made by social movements may be one way of mitigating both types of radicalization. Embedded in the tradition of critical criminology, this paper attempts to demonstrate that only by outflanking conventional categories of analysis can the criminological community aspire to grasp such thorny contemporary phenomena

    The multidrug resistance 1 (MDR1) gene polymorphism G-rs3789243-A is not associated with disease susceptibility in Norwegian patients with colorectal adenoma and colorectal cancer; a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking, dietary factors, and alcohol consumption are known life style factors contributing to gastrointestinal carcinogenesis. Genetic variations in carcinogen handling may affect cancer risk. The multidrug resistance 1(<it>MDR1/ABCB1</it>) gene encodes the transport protein P-glycoprotein (a phase III xenobiotic transporter). P-glycoprotein is present in the intestinal mucosal lining and restricts absorption of certain carcinogens, among these polycyclic aromatic hydrocarbons. Moreover, P-glycoprotein transports various endogenous substrates such as cytokines and chemokines involved in inflammation, and may thereby affect the risk of malignity. Hence, genetic variations that modify the function of P-glycoprotein may be associated with the risk of colorectal cancer (CRC). We have previously found an association between the <it>MDR1 </it>intron 3 G-rs3789243-A polymorphism and the risk of CRC in a Danish study population. The aim of this study was to investigate if this <it>MDR1 </it>polymorphism was associated with risk of colorectal adenoma (CA) and CRC in the Norwegian population.</p> <p>Methods</p> <p>Using a case-control design, the association between the <it>MDR1 </it>intron 3 G-rs3789243-A polymorphism and the risk of colorectal carcinomas and adenomas in the Norwegian population was assessed in 167 carcinomas, 990 adenomas, and 400 controls. Genotypes were determined by allelic discrimination. Odds ratio (OR) and 95 confidence interval (95% CI) were estimated by binary logistic regression.</p> <p>Results</p> <p>No association was found between the <it>MDR1 </it>polymorphism (G-rs3789243-A) and colorectal adenomas or cancer. Carriers of the variant allele of MDR1 intron 3 had odds ratios (95% CI) of 0.97 (0.72–1.29) for developing adenomas, and 0.70 (0.41–1.21) for colorectal cancer, respectively, compared to homozygous wild type carriers.</p> <p>Conclusion</p> <p>The <it>MDR1 </it>intron 3 (G-rs3789243-A) polymorphism was not associated with a risk of colorectal adenomas or carcinomas in the present Norwegian study group. Thus, this <it>MDR1 </it>polymorphism does not seem to play an important role in colorectal carcinogenesis in this population.</p

    The Generation of Promoter-Mediated Transcriptional Noise in Bacteria

    Get PDF
    Noise in the expression of a gene produces fluctuations in the concentration of the gene product. These fluctuations can interfere with optimal function or can be exploited to generate beneficial diversity between cells; gene expression noise is therefore expected to be subject to evolutionary pressure. Shifts between modes of high and low rates of transcription initiation at a promoter appear to contribute to this noise both in eukaryotes and prokaryotes. However, models invoked for eukaryotic promoter noise such as stable activation scaffolds or persistent nucleosome alterations seem unlikely to apply to prokaryotic promoters. We consider the relative importance of the steps required for transcription initiation. The 3-step transcription initiation model of McClure is extended into a mathematical model that can be used to predict consequences of additional promoter properties. We show in principle that the transcriptional bursting observed at an E. coli promoter by Golding et al. (2005) can be explained by stimulation of initiation by the negative supercoiling behind a transcribing RNA polymerase (RNAP) or by the formation of moribund or dead-end RNAP-promoter complexes. Both mechanisms are tunable by the alteration of promoter kinetics and therefore allow the optimization of promoter mediated noise.Comment: 4 figures, 1 table. Supplemental materials are also include
    corecore