17 research outputs found

    Ren: a novel, developmentally regulated gene that promotes neural cell differentiation

    Get PDF
    Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation

    Cloning of the Human Interferon-Related Developmental Regulator (IFRD1) Gene Coding for the PC4 Protein, a Member of a Novel Family of Developmentally Regulated Genes

    Get PDF
    The rat PC4 gene had been initially isolated as a nerve growth factor-inducible sequence in PC12 cells. Although its function remains unknown, recently it has been shown that PC4 is necessary to muscle dif- ferentiation and that it might have a role in signal transduction. We report the isolation of the human homolog of the rat PC4 gene, renamed here IFRD1 (interferon-related developmental regulator 1). Sev- eral human IFRD1 clones were identified by searching the EST database using the rat IFRD1 (PC4) cDNA as a query. An EST clone containing the entire ORF was chosen for sequencing. Human IFRD1 presented a pre- dicted protein product of 453 amino acids, highly con- served (90.2% identity) compared to the rat IFRD1 (PC4) protein sequences. The mapping assignment of human IFRD1 to chromosome 7q22– q31 was retrieved from the UniGene database maintained at NCBI. A comparison of human IFRD1 (PC4) protein to data- bases revealed 47% identity to the protein encoded by the human gene SKMc15, originally isolated from a chromosome 3-specific library. Therefore, SKMc15 is a gene related to IFRD1, being the second member of a novel family. We analyzed their expression during mu- rine development, and we found that mouse IFRD1 appears more expressed in specific differentiating structures at midgestation, while mouse SKMc15 is highly expressed soon after gastrulation and in the hepatic primordium, suggesting an involvement in early hematopoiesis

    Chemokine MIP-2/CXCL2, acting on CXCR2, induces motor neuron death in primary cultures

    No full text
    Objectives: Chemokines are implicated in many diseases of the central nervous system (CNS). Although their primary role is to induce inflammation through the recruitment of leukocytes by their chemotactic activity, they may also have direct effects on neuronal cells. We evaluated the expression of CXCR1 and CXCR2 and investigated the effect of CXCR2 activation by the agonist MIP-2 (CXCL2) on primary cultured motor neurons. To specifically assess the role of CXCR2 in the neurotoxicity induced by MIP-2, we used the CXCR1/2 inhibitor reparixin and studied the effect of the chemokine on motor neuron cultures from CXCR2-deficient mice. Methods: Primary motor neurons prepared from rat or mouse embryos were treated with MIP-2 and reparixin. Motor neuron viability and receptor expression were assessed by immunocytochemical techniques. Results: Rat primary motor neurons expressed CXCR2 receptors and recombinant rat MIP-2 induced dose-dependent neurotoxicity. This neurotoxicity was counteracted by reparixin, a specific CXCR1/2 inhibitor, and was not observed in motor neurons from CXCR2-deficient mice. Conclusions: CXCR2 activation might directly contribute to motor neuron degeneration. Thus, chemokines acting on CXCR2, including IL-8, may have direct pathogenic effects in CNS diseases, independent of the induction of leukocyte migration

    PC4 Coactivates MyoD by Relieving the Histone Deacetylase 4-Mediated Inhibition of Myocyte Enhancer Factor 2C

    Get PDF
    Histone deacetylase 4 (HDAC4) negatively regulates skeletal myogenesis by associating with the myocyte enhancer factor 2 (MEF2) transcription factors. Our data indicate that the gene PC4 (interferon-related developmental regulator 1 [IFRD1], Tis7), which we have previously shown to be required for myoblast differentiation, is both induced by MyoD and potentiates the transcriptional activity of MyoD, thus revealing a positive regulatory loop between these molecules. Enhancement by PC4 of MyoD-dependent activation of muscle gene promoters occurs selectively through MEF2 binding sites. Furthermore, PC4 localizes in the nucleus of differentiating myoblasts, associates with MEF2C, and is able to counteract the HDAC4-mediated inhibition of MEF2C. This latter action can be explained by the observed ability of PC4 to dose dependently displace HDAC4 from MEF2C. Consistently, we have observed that (i) the region of PC4 that binds MEF2C is sufficient to counteract the inhibition by HDAC4; (ii) PC4, although able to bind HDAC4, does not inhibit the enzymatic activity of HDAC4; and (iii) PC4 overcomes the inhibition mediated by the amino-terminal domain of HDAC4, which associates with MEF2C but not with PC4. Together, our findings strongly suggest that PC4 acts as a coactivator of MyoD and MEF2C by removing the inhibitory effect of HDAC4, thus exerting a pivotal function during myogenesis

    Crucial pathophysiological role of CXCR2 in experimental ulcerative colitis in mice

    No full text
    Abstract: Polymorphonuclear leukocyte infiltration and activation into colonic mucosa are believed to play a pivotal role in mediating tissue damage in human ulcerative colitis (UC). Ligands of human CXC chemokine receptor 1 and 2 (CXCR1/R2) are chemoattractants of PMN, and high levels were found in the mucosa of UC patients. To investigate the pathophysiological role played by CXCR2 in experimental UC, we induced chronic experimental colitis in WT and CXCR2 �/� mice by two consecutive cycles of 4 % dextran sulfate sodium administration in drinking water. In wild-type (WT) mice, the chronic relapsing of DSSinduced colitis was characterized by clinical signs and histopathological findings that closely resemble human disease. CXCR2 �/ � mice failed to show PMN infiltration into the mucosa and, consistently with a key role of PMN in mediating tissue damage in UC, showed limited signs of mucosal damage and reduced clinical symptoms. Our data demonstrate that CXCR2 plays a key pathophysiological role in experimental UC, suggesting that CXCR2 activation may represent a relevant pharmacological target for the design of novel pharmacological treatment
    corecore