9 research outputs found

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Analysis and Reduction of Nonlinear Effects in Optical Fiber Frequency Transfer

    No full text
    Nonlinear effects in optical fiber frequency transfer have a significant impact on the precision of frequency transfer. We investigate the main nonlinear effects, including the Brillouin scattering and the Raman scattering, in optical fiber frequency transfer through theoretical and simulation calculations in detail. The calculation results show that the threshold powers of the Brillouin scattering and the Raman scattering decrease with the increase in the fiber length; however, the fiber length has little to no impact on the threshold powers when the fiber length is greater than 10 km. The threshold powers, including the Brillouin scattering and the Raman scattering, increase as the attenuation coefficient increases. Conversely, when it comes to the gain coefficients, the outcomes exhibit a reverse trend. When the linewidth Δvlaser of the laser source is from 1 Hz to 1 MHz, the linewidth Δvlaser does not affect the threshold powers of the Brillouin scattering. This study seeks to offer design guidance aimed at mitigating nonlinear effects in optical fiber frequency transfer. The calculated results hold considerable potential in guiding various applications reliant on Brillouin and Raman scattering properties, such as laser technology and optical fiber sensing
    corecore