22 research outputs found

    Squamous cell carcinoma antigen 1 and 2 expression in cultured normal peripheral blood mononuclear cells and in vulvar squamous cell carcinoma

    Get PDF
    Squamous cell carcinoma antigen (SCCA) is expressed in normal squamous cell epithelia and in squamous cell carcinomas (SCC). Two nearly identical genes encode the inhibitory serpins SCCA1 (SERPINB3) and SCCA2 (SERPINB4). Serum levels of SCCA are elevated in patients with benign skin diseases and in patients with SCC. SCCA, used for the monitoring of SCC patients, presents no satisfactory diagnostic specificity. As we have shown previously, the reverse transcription polymerase chain reaction (RT-PCR)-based SCCA messenger RNA (mRNA) testing aimed at detecting disseminated cancer cells may be hampered by the false-positive results due to SCCA expression in activated peripheral blood mononuclear cells (PBMC). The aim of this study was to assess the expression of SCCA at mRNA and protein levels in cultured normal PBMC, compared to that in vulvar SCC (VSCC) samples. High SCCA concentrations were found in vulvar tumours and in metastatic lymph nodes, while negative inguinal lymph nodes from the same patients often presented significantly less SCCA. In normal activated PBMC, the level of SCCA protein was the lowest. At the mRNA level SCCA was detectable in normal PBMC even in cultures with no mitogen stimulation, but only by the nested RT-PCR, contrary to VSCC samples found to be SCCA positive already in one-step PCR. Both SCCA1 and SCCA2 transcripts were present in cultured PBMC; SCCA1 was expressed at a higher level than SCCA2. In conclusion, both SCCA forms are detectable in normal PBMC cultured in vitro. SCCA expression level in normal PBMC is much lower than in the squamous epithelium-derived cells. In VSCC, in addition to tumour itself, metastatic lymph nodes seem also to be a potential source of serum SCCA

    Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/ Cxcr7 axis

    Get PDF
    The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor ¡1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras- Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle

    The miR151 and miR5100 Transfected Bone Marrow Stromal Cells Increase Myoblast Fusion in IGFBP2 Dependent Manner

    Get PDF
    BACKGROUND: Bone marrow stromal cells (BMSCs) form a perivascular cell population in the bone marrow. These cells do not present naïve myogenic potential. However, their myogenic identity could be induced experimentally in vitro or in vivo. In vivo, after transplantation into injured muscle, BMSCs rarely fused with myofibers. However, BMSC participation in myofiber reconstruction increased if they were modified by NICD or PAX3 overexpression. Nevertheless, BMSCs paracrine function could play a positive role in skeletal muscle regeneration. Previously, we showed that SDF-1 treatment and coculture with myofibers increased BMSC ability to reconstruct myofibers. We also noticed that SDF-1 treatment changed selected miRNAs expression, including miR151 and miR5100. METHODS: Mouse BMSCs were transfected with miR151 and miR5100 mimics and their proliferation, myogenic differentiation, and fusion with myoblasts were analyzed. RESULTS: We showed that miR151 and miR5100 played an important role in the regulation of BMSC proliferation and migration. Moreover, the presence of miR151 and miR5100 transfected BMSCs in co-cultures with human myoblasts increased their fusion. This effect was achieved in an IGFBP2 dependent manner. CONCLUSIONS: Mouse BMSCs did not present naïve myogenic potential but secreted proteins could impact myogenic cell differentiation. miR151 and miR5100 transfection changed BMSC migration and IGFBP2 and MMP12 expression in BMSCs. miR151 and miR5100 transfected BMSCs increased myoblast fusion in vitro. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12015-022-10350-y

    Efficiency of fatty acid accumulation into breast muscles of chickens fed diets with lycopene, fish oil and different chemical selenium forms

    Get PDF
    The purpose of the investigation was to determine the effect of the addition of 12 ppm lycopene (Lyc), 2% fish oil (FO) or 0.25 ppm Se as selenate (SeVI) or selenized yeast (SeY) to an isoenergetic and isonitrogenous basal diet containing sunflower oil (SO) as the source of energy on the concentrations of fatty acids (FA), especially saturated- (SFA), mono- (MUFA) and polyunsaturated (PUFA) acids, in breast muscles of female and male chickens for six weeks. The influence of these additives on the capacity of D9-, D4- and D5-desaturations, the elongation of FA, and the yield of PUFA peroxidation (an oxidative stress) in breast muscles of female and male chickens were also studied. Dietary SeY most efficiently decreased the concentrations of SFA, MUFA and PUFA as well as malondialdehyde (the marker of the oxidative stress) in muscles of female and male chickens. The addition of FO most efficiently increased the concentration of n-3 long-chain PUFA (n-3LPUFA) and most effectively increased the concentration ratio of n-3LPUFA to SFA (n-3LPUFA/SFA), while most effectively decreased the concentration ratio of n-6PUFA to n-3PUFA (n-6PUFA/n-3PUFA) in muscles of chickens that are beneficial to human health. We conclude that further studies are necessary to determine if diets containing other chemical form of selenium compounds and other vegetable oils induce changes in the profiles of fatty acids in muscles of chickens that are beneficial to human health.Keywords: Chicken, lycopene, selenium, fish oil, sunflower oil, breast muscles, fatty acids, malondialdehydeAfrican Journal of Biotechnology, Vol 13(14), 1604-161

    miRNA-126a plays important role in myoblast and endothelial cell interaction

    No full text
    Abstract Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis

    Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche

    No full text
    Abstract Background Skeletal muscle regeneration is possible thanks to unipotent stem cells, which are satellite cells connected to the myofibers. Populations of stem cells other than muscle-specific satellite cells are considered as sources of cells able to support skeletal muscle reconstruction. Among these are bone marrow-derived mesenchymal stem cells (BM-MSCs), which are multipotent, self-renewing stem cells present in the bone marrow stroma. Available data documenting the ability of BM-MSCs to undergo myogenic differentiation are not definitive. In the current work, we aimed to check if the satellite cell niche could impact the ability of bone marrow-derived cells to follow a myogenic program. Methods We established a new in-vitro method for the coculture of bone marrow-derived cells (BMCs) that express CXCR4 (CXCR4+BMCs; the stromal-derived factor-1 (Sdf-1) receptor) with myofibers. Using various tests, we analyzed the myogenic identity of BMCs and their ability to fuse with myoblasts in vitro and in vivo. Results We showed that Sdf-1 treatment increased the number of CXCR4+BMCs able to bind the myofiber and occupy the satellite cell niche. Moreover, interaction with myofibers induced the expression of myogenic regulatory factors (MRFs) in CXCR4+BMCs. CXCR4+BMCs, pretreated by the coculture with myofibers and Sdf-1, participated in myotube formation in vitro and also myofiber reconstruction in vivo. We also showed that Sdf-1 overexpression in vivo (in injured and regenerating muscles) supported the participation of CXCR4+BMCs in new myofiber formation. Conclusion We showed that CXCR4+BMC interaction with myofibers (that is, within the satellite cell niche) induced CXCR4+BMC myogenic commitment. CXCR4+BMCs, pretreated using such a method of culture, were able to participate in skeletal muscle regeneration
    corecore