14 research outputs found

    Process development for the production of Alternaria toxins in a bioreactor

    Get PDF

    Process development for the elucidation of mycotoxin formation in Alternaria alternata

    Get PDF
    The black mould Alternaria alternata produces a wide diversity of mycotoxins which are of particular health concern. Since no maximum allowable limits are set for Alternaria toxins in food and feed, prevention of Alternaria infestations and mycotoxin spoilage is the only way to avoid health risks. Thus, the understanding of mycotoxin biosynthesis is essential. For that purpose, a reliable batch process in a 2 L bioreactor was established which enables the study of several parameters influencing the production of the mycotoxins alternariol (AOH), alternariol monomethylether (AME) and tenuazonic acid (TA) by A. alternata DSM 12633. Modified Czapek-Dox medium was used with glucose as carbon source and ammonium and nitrate as nitrogen sources. Consumption of carbon and nitrogen sources as well as formation of the three mycotoxins were monitored; the average data of five independent fermentations was plotted and fitted using a logistic equation with four parameters. Maximum mycotoxin concentrations of 3.49 ± 0.12 mg/L AOH, 1.62 ± 0.14 mg/L AME and 38.28 ± 0.1 mg/L TA were obtained

    Influence of pH and carbon to nitrogen ratio on mycotoxin production by Alternaria alternata in submerged cultivation

    Get PDF
    Production of the Alternaria mycotoxins alternariol (AOH), alternariol monomethylether (AME) and tenuazonic acid (TA) by Alternaria alternata DSM 12633 was influenced by pH and carbon to nitrogen (C:N) ratio of the growth medium both in shaking flasks and bioreactor cultivation. The impact of medium pH on mycotoxin production was studied in the range of pH 3.5 - 8. pH values above 5.5 led to a decreased mycotoxin production or inhibited mycotoxin formation completely whereas an acidic pH in the range of 4.0-4.5 was optimal for mycotoxin production. The influence of the C:N ratio was evaluated over the range of 24 to 96. Glucose was used as carbon source and its concentration was altered while nitrogen concentration was kept constant. Growth kinetics and mycotoxin production parameters were studied depending on different C:N ratios. With increasing initial glucose concentration fungal biomass did increase but the maximum specific growth rate was not influenced. The optimal initial C:N ratio for attaining highest mycotoxin concentrations was 72. A higher C:N ratio did not further enhance mycotoxin production

    Application of superabsorbent polymers (SAP) as desiccants to dry maize and reduce aflatoxin contamination

    No full text
    The ability of superabsorbent polymers (SAP) in drying maize and controlling aflatoxin contamination was studied under different temperatures, drying times and SAP-to-maize ratios. Temperature and drying time showed significant influence on the aflatoxin formation. SAP-to-maize ratios between 1:1 and 1:5 showed little or no aflatoxin contamination after drying to the optimal moisture content (MC) of 13 %, while for ratios 1:10 and 1:20, aflatoxin contamination was not well controlled due to the overall higher MC and drying time, which made these ratios unsuitable for the drying process. Results clearly show that temperature, frequency of SAP change, drying time and SAP-to-maize ratio influenced the drying rate and aflatoxin contamination. Furthermore, it was shown that SAP had good potential for grain drying and can be used iteratively, which can make this system an optimal solution to reduce aflatoxin contamination in maize, particular for developing countries and resource-lacking areas
    corecore