4,055 research outputs found

    Employee voice and human resource management: an empirical analysis using British data

    Get PDF
    The definition of formal employee voice employed in this paper is a variant of the definition developed by Hirschman (1970) in his seminal monograph and later elaborated and appropriated to unions in the labour market by Freeman and Medoff (1984). What we refer to as formal voice is any institutionalised form of two-way communication between management and employees. This is not the same as information sharing or other types of one-way consultation. Meaningful two-way dialogue, as that found typically in union collective bargained voice, is what formal employee voice refers to. As we endeavour to show in this paper, these forms of two-way communication typically extend beyond union voice to non-union forms of representation and direct forms of two-way dialogue, such as problem-solving groups and the statutory systems of works council voice developed as part of deeper European Union (EU) integration. Broader definitions of voice can also be invoked for the labour market as a whole or even for society more generally. In this context see recent work by Adrian Wilkinson and his colleagues (Dundon et al., 2004) and also John Budd’s Employment with a Human Face (2004). Some may take our definition of voice above and simply state that a formal voice system is 'the way workers communicate with management'. For us that would not be a poor workable definition. But how does that play out when we talk about Human Resource Management (HRM) techniques and their role in either abetting or inhibiting voice at work? HRM is not a voice system. Instead we assert that it has a different purpose altogether but may employ voice alongside in order to achieve the end goal of improving worker performance. This assertion flies against most received wisdom and evidence from the US, where union voice (the only real form permitted by the Wagner Act) often sits uncomfortably with HR. In England, up to now, the only thorough evidence by Wood and Machin (2005) suggested no correlation between voice (union) and HRM adoption. In this paper, however, we offer a new explanation for these findings above and in the process contribute some important new findings of our own. The principal source of formal employee voice has typically been provided by trade unions. However, in Britain, where our empirical analysis resides, unions have not been the sole, or even main, conduit for worker-management voice relations for more than three decades. Since the 1960s, firms in Britain have been combining traditional collective bargaining over wages and working conditions with independent non-union channels of two-way communication. Practically, this means things like having a non-union employee-employer committee to handle health-safety issues, promotion criteria or disability concerns. In my own university, a traditional collective bargaining process has neatly resided alongside a plethora of non-union administration and staff committees that discuss nearly every aspect of day-to-day work life and even strategic university planning goals. How these varying types and intensity of voice systems at work can (and do) sit alongside certain managerial innovations for the improvement of employee productivity, is the subject matter of our paper

    Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field

    Full text link
    We consider the optimal control of quantum systems interacting non-linearly with an electromagnetic field. We propose new monotonically convergent algorithms to solve the optimal equations. The monotonic behavior of the algorithm is ensured by a non-standard choice of the cost which is not quadratic in the field. These algorithms can be constructed for pure and mixed-state quantum systems. The efficiency of the method is shown numerically on molecular orientation with a non-linearity of order 3 in the field. Discretizing the amplitude and the phase of the Fourier transform of the optimal field, we show that the optimal solution can be well-approximated by pulses that could be implemented experimentally.Comment: 24 pages, 11 figure

    False positive probabilties for all Kepler Objects of Interest: 1284 newly validated planets and 428 likely false positives

    Get PDF
    We present astrophysical false positive probability calculations for every Kepler Object of Interest (KOI)---the first large-scale demonstration of a fully automated transiting planet validation procedure. Out of 7056 KOIs, we determine that 1935 have probabilities <1% to be astrophysical false positives, and thus may be considered validated planets. 1284 of these have not yet been validated or confirmed by other methods. In addition, we identify 428 KOIs likely to be false positives that have not yet been identified as such, though some of these may be a result of unidentified transit timing variations. A side product of these calculations is full stellar property posterior samplings for every host star, modeled as single, binary, and triple systems. These calculations use 'vespa', a publicly available Python package able to be easily applied to any transiting exoplanet candidate.Comment: 20 pages, 8 figures. Published in ApJ. Instructions to reproduce results can be found at https://github.com/timothydmorton/koi-fp

    Tissue-selective expression of a conditionally-active ROCK2-estrogen receptor fusion protein

    Get PDF
    The serine/threonine kinases ROCK1 and ROCK2 are central mediators of actomyosin contractile force generation that act downstream of the RhoA small GTP-binding protein. As a result, they have key roles in regulating cell morphology and proliferation, and have been implicated in numerous pathological conditions and diseases including hypertension and cancer. Here we describe the generation of a gene-targeted mouse line that enables CRE-inducible expression of a conditionally-active fusion between the ROCK2 kinase domain and the hormone-binding domain of a mutated estrogen receptor (ROCK2:ER). This two-stage system of regulation allows for tissue-selective expression of the ROCK2:ER fusion protein, which then requires administration of estrogen analogues such as tamoxifen or 4-hydroxytamoxifen to elicit kinase activity. This conditional gain-of-function system was validated in multiple tissues by crossing with mice expressing CRE recombinase under the transcriptional control of cytokeratin14 (K14), murine mammary tumor virus (MMTV) or cytochrome P450 Cyp1A1 (Ah) promoters, driving appropriate expression in the epidermis, mammary or intestinal epithelia respectively. Given the interest in ROCK signaling in normal physiology and disease, this mouse line will facilitate research into the consequences of ROCK activation that could be used to complement conditional knockout models

    A Transiting Jupiter Analog

    Get PDF
    Decadal-long radial velocity surveys have recently started to discover analogs to the most influential planet of our solar system, Jupiter. Detecting and characterizing these worlds is expected to shape our understanding of our uniqueness in the cosmos. Despite the great successes of recent transit surveys, Jupiter analogs represent a terra incognita, owing to the strong intrinsic bias of this method against long orbital periods. We here report on the first validated transiting Jupiter analog, Kepler-167e (KOI-490.02), discovered using Kepler archival photometry orbiting the K4-dwarf KIC-3239945. With a radius of (0.91±0.02)(0.91\pm0.02) RJupR_{\mathrm{Jup}}, a low orbital eccentricity (0.06−0.04+0.100.06_{-0.04}^{+0.10}) and an equilibrium temperature of (131±3)(131\pm3) K, Kepler-167e bears many of the basic hallmarks of Jupiter. Kepler-167e is accompanied by three Super-Earths on compact orbits, which we also validate, leaving a large cavity of transiting worlds around the habitable-zone. With two transits and continuous photometric coverage, we are able to uniquely and precisely measure the orbital period of this post snow-line planet (1071.2323±0.00061071.2323\pm0.0006 d), paving the way for follow-up of this K=11.8K=11.8 mag target.Comment: 14 pages, 10 figures. Accepted to ApJ. Posteriors available at https://github.com/CoolWorlds/Kepler-167-Posterior

    Discovery of a Transiting Planet Near the Snow-Line

    Full text link
    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4 sigmas confidence. Kepler-421b receives the same insolation as a body at ~2AU in the Solar System and for a Uranian albedo would have an effective temperature of ~180K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ~3Myr, indicating that Kepler-421b may have formed at its observed location.Comment: 14 pages, 10 figures, 3 tables. Accepted in Ap

    Protein annotation and modelling servers at University College London

    Get PDF
    The UCL Bioinformatics Group web portal offers several high quality protein structure prediction and function annotation algorithms including PSIPRED, pGenTHREADER, pDomTHREADER, MEMSAT, MetSite, DISOPRED2, DomPred and FFPred for the prediction of secondary structure, protein fold, protein structural domain, transmembrane helix topology, metal binding sites, regions of protein disorder, protein domain boundaries and protein function, respectively. We also now offer a fully automated 3D modelling pipeline: BioSerf, which performed well in CASP8 and uses a fragment-assembly approach which placed it in the top five servers in the de novo modelling category. The servers are available via the group web site at http://bioinf.cs.ucl.ac.uk/

    The Kepler Pixel Response Function

    Full text link
    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal to noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for publication

    Dynamical masses, absolute radii and 3D orbits of the triply eclipsing star HD 181068 from Kepler photometry

    Get PDF
    HD 181068 is the brighter of the two known triply eclipsing hierarchical triple stars in the Kepler field. It has been continuously observed for more than 2 yr with the Kepler space telescope. Of the nine quarters of the data, three have been obtained in short-cadence mode, that is one point per 58.9 s. Here we analyse this unique data set to determine absolute physical parameters (most importantly the masses and radii) and full orbital configuration using a sophisticated novel approach. We measure eclipse timing variations (ETVs), which are then combined with the single-lined radial velocity measurements to yield masses in a manner equivalent to double-lined spectroscopic binaries. We have also developed a new light-curve synthesis code that is used to model the triple, mutual eclipses and the effects of the changing tidal field on the stellar surface and the relativistic Doppler beaming. By combining the stellar masses from the ETV study with the simultaneous light-curve analysis we determine the absolute radii of the three stars. Our results indicate that the close and the wide subsystems revolve in almost exactly coplanar and prograde orbits. The newly determined parameters draw a consistent picture of the system with such details that have been beyond reach before
    • 

    corecore