6 research outputs found

    Birds in the playground: Evaluating the effectiveness of an urban environmental education project in enhancing school children's awareness, knowledge and attitudes towards local wildlife.

    Get PDF
    Children nowadays, particularly in urban areas, are more disconnected from nature than ever before, leading to a large-scale "extinction of experience" with the natural world. Yet there are many potential benefits from children interacting with nature first-hand, including via outdoor learning opportunities. Urban environmental education programmes typically aim to increase awareness and knowledge of local biodiversity and to promote positive attitudes and behaviour towards the environment. However, limited research has been conducted evaluating to what extent these interventions achieve their goals. Here, we explore and assess the influence of a six-week bird-feeding and monitoring project conducted within school grounds ("Bird Buddies") on individual awareness, knowledge and attitudes towards birds by primary school children. This initiative was conducted across eight (sub-)urban primary schools within Brighton and Hove (UK), with 220 participating children (aged 7 to 10). Via pre- and post-project questionnaires, we found evidence for enhanced awareness of local biodiversity, alongside significant gains in both bird identification knowledge and attitudes, which were greatest for children with little prior exposure to nature. Many children expressed a keenness to continue improving the environmental value of their school grounds and to apply elements of the project at home. Student project evaluation scores were consistently positive. Mirroring this, participating teachers endorsed the project as a positive learning experience for their students. One year after the project, several schools were continuing to feed and watch birds. Collectively, the findings from this study highlight the multiple benefits that can be derived from engagement with a relatively short outdoor environmental activity. We therefore believe that such interventions, if repeated locally/longer term, could enhance children's experience with nature in urban settings with combined positive environmental impact

    Laboratory culture of the California Sea Firefly Vargula tsujii (Ostracoda: Cypridinidae): Developing a model system for the evolution of marine bioluminescence

    No full text
    © 2020, The Author(s). Bioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa. Laboratory culture of bioluminescent organisms from diverse taxonomic groups is important for determining the biosynthetic pathways of bioluminescent substrates, which may lead to new tools for biotechnology and biomedicine. Some bioluminescent groups may be cultured, including some cnidarians, ctenophores, and brittle stars, but those use luminescent substrates (luciferins) obtained from their diets, and therefore are not informative for determination of the biosynthetic pathways of the luciferins. Other groups, including terrestrial fireflies, do synthesize their own luciferin, but culturing them is difficult and the biosynthetic pathway for firefly luciferin remains unclear. An additional independent origin of endogenous bioluminescence is found within ostracods from the family Cypridinidae, which use their luminescence for defense and, in Caribbean species, for courtship displays. Here, we report the first complete life cycle of a luminous ostracod (Vargula tsujii Kornicker & Baker, 1977, the California Sea Firefly) in the laboratory. We also describe the late-stage embryogenesis of Vargula tsujii and discuss the size classes of instar development. We find embryogenesis in V. tsujii ranges from 25–38 days, and this species appears to have five instar stages, consistent with ontogeny in other cypridinid lineages. We estimate a complete life cycle at 3–4 months. We also present the first complete mitochondrial genome for Vargula tsujii. Bringing a luminous ostracod into laboratory culture sets the stage for many potential avenues of study, including learning the biosynthetic pathway of cypridinid luciferin and genomic manipulation of an autogenic bioluminescent system

    Laboratory culture of the California Sea Firefly Vargula tsujii (Ostracoda: Cypridinidae): Developing a model system for the evolution of marine bioluminescence

    No full text
    © 2020, The Author(s). Bioluminescence, or the production of light by living organisms via chemical reaction, is widespread across Metazoa. Laboratory culture of bioluminescent organisms from diverse taxonomic groups is important for determining the biosynthetic pathways of bioluminescent substrates, which may lead to new tools for biotechnology and biomedicine. Some bioluminescent groups may be cultured, including some cnidarians, ctenophores, and brittle stars, but those use luminescent substrates (luciferins) obtained from their diets, and therefore are not informative for determination of the biosynthetic pathways of the luciferins. Other groups, including terrestrial fireflies, do synthesize their own luciferin, but culturing them is difficult and the biosynthetic pathway for firefly luciferin remains unclear. An additional independent origin of endogenous bioluminescence is found within ostracods from the family Cypridinidae, which use their luminescence for defense and, in Caribbean species, for courtship displays. Here, we report the first complete life cycle of a luminous ostracod (Vargula tsujii Kornicker & Baker, 1977, the California Sea Firefly) in the laboratory. We also describe the late-stage embryogenesis of Vargula tsujii and discuss the size classes of instar development. We find embryogenesis in V. tsujii ranges from 25–38 days, and this species appears to have five instar stages, consistent with ontogeny in other cypridinid lineages. We estimate a complete life cycle at 3–4 months. We also present the first complete mitochondrial genome for Vargula tsujii. Bringing a luminous ostracod into laboratory culture sets the stage for many potential avenues of study, including learning the biosynthetic pathway of cypridinid luciferin and genomic manipulation of an autogenic bioluminescent system
    corecore