200 research outputs found
Postprandial ghrelin suppression is exaggerated following major surgery; implications for nutritional recovery
Meeting patients' nutritional requirements and preventing malnutrition is a challenge following major surgical procedures. The role of ghrelin in nutritional recovery after non-gastrointestinal major surgery is unknown. We used coronary artery bypass grafting (CABG) as an example of anticipated good recovery post major surgery
Experimental evidence of intrabeam scattering in a free-electron laser driver
Abstract
The effect of multiple small-angle Coulomb scattering, or intrabeam scattering (IBS) is routinely observed in electron storage rings over the typical damping time scale of milliseconds. So far, IBS has not been observed in single pass electron accelerators because charge density orders of magnitude higher than in storage rings would be needed. We show that such density is now available at high brightness electron linacs for free-electron lasers (FELs). We report measurements of the beam energy spread in the FERMI linac in the presence of the microbunching instability, which are consistent with a revisited IBS model for single pass systems. We also show that neglecting the hereby demonstrated effect of IBS in the parameter range typical of seeded VUV and soft x-ray FELs, results in too conservative a facility design, or failure to realise the accessible potential performance. As an example, an optimization of the FERMI parameters driven by an experimentally benchmarked model, opens the door to the extension of stable single spectral line emission to the water window (2.3–4.4 nm), with far-reaching implications for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences, and including nonlinear x-ray optics based on the four-wave-mixing approach.</jats:p
Changes in appetite related gut hormones in intensive care unit patients: a pilot cohort study
INTRODUCTION: The nutritional status of patients in the intensive care unit (ICU) appears to decline not only during their stay in the ICU but also after discharge from the ICU. Recent evidence suggests that gut released peptides, such as ghrelin and peptide YY (PYY) regulate the initiation and termination of meals and could play a role in the altered eating behaviour of sick patients. The aim of this study was to assess the patterns of ghrelin and PYY levels during the stay of ICU patients in hospital. METHODS: Sixteen ICU patients (60 ± 4.7 years, body mass index (BMI) 28.1 ± 1.7 kg/m(2 )(mean ± standard error of the mean)) underwent fasting blood sample collections on days 1, 3, 5, 14, 21 and 28 of their stay at Hammersmith and Charing Cross Hospitals. Changes in appetite and biochemical and anthropometric markers of nutritional status were recorded. A comparison was made to a group of 36 healthy volunteers matched for age and BMI (54.3 ± 2.9 years, p = 0.3; BMI 25.8 ± 0.8 kg/m(2 )p = 0.2). RESULTS: Compared to healthy subjects, ICU patients exhibited a significantly lower level of ghrelin (day one 297.8 ± 76.3 versus 827.2 ± 78.7 pmol/l, p < 0.001) during their stay in the ICU. This tended to rise to the normal level during the last three weeks of hospital stay. Conversely, ICU patients showed a significantly higher level of PYY (day one 31.5 ± 9.6 versus 11.3 ± 1.0 pmol/l, p < 0.05) throughout their stay in the ICU and on the ward, with a downward trend to the normal level during the last three weeks of stay. CONCLUSIONS: Results from our study show high levels of PYY and low levels of ghrelin in ICU patients compared to healthy controls. There appears to be a relationship between the level of these gut hormones and nutritional intake
Beam characterisation and machine development at VELA
An overview is presented of developments on VELA (Versatile Electron Linear Accelerator), an RF photoinjector with two user stations (beam areas BA1, and BA2) at Daresbury Laboratory. Numerous machine development, commissioning, beam characterisation and user experiments have been completed in the past year. A new beamline and a dedicated multi-purpose chamber have been commissioned in BA1 and the first experiments performed. A number of measures have been taken to improve the stability of machine by mitigating problems with a phase drift, laser beam transport drift and a coherent beam oscillation. The 6D phase space of the electron beam has been characterised through quadrupole scans, transverse tomography and with a transverse deflecting cavity
Reduced risk of synovial sarcoma in females: X-chromosome inactivation?
Synovial sarcoma shows a characteristic t(X;18) translocation but not the expected female predominance in incidence. We speculate that, among females, one X-chromosome is inactivated and that only the translocation to an active X-chromosome leads to development of synovial sarcoma. Population-based cancer registry data from the SEER program support this hypothesis
Acute effect of meal glycemic index and glycemic load on blood glucose and insulin responses in humans
OBJECTIVE: Foods with contrasting glycemic index when incorporated into a meal, are able to differentially modify glycemia and insulinemia. However, little is known about whether this is dependent on the size of the meal. The purposes of this study were: i) to determine if the differential impact on blood glucose and insulin responses induced by contrasting GI foods is similar when provided in meals of different sizes, and; ii) to determine the relationship between the total meal glycemic load and the observed serum glucose and insulin responses. METHODS: Twelve obese women (BMI 33.7 ± 2.4 kg/m(2)) were recruited. Subjects received 4 different meals in random order. Two meals had a low glycemic index (40–43%) and two had a high-glycemic index (86–91%). Both meal types were given as two meal sizes with energy supply corresponding to 23% and 49% of predicted basal metabolic rate. Thus, meals with three different glycemic loads (95, 45–48 and 22 g) were administered. Blood samples were taken before and after each meal to determine glucose, free-fatty acids, insulin and glucagon concentrations over a 5-h period. RESULTS: An almost 2-fold higher serum glucose and insulin incremental area under the curve (AUC) over 2 h for the high- versus low-glycemic index same sized meals was observed (p < 0.05), however, for the serum glucose response in small meals this was not significant (p = 0.38). Calculated meal glycemic load was associated with 2 and 5 h serum glucose (r = 0.58, p < 0.01) and insulin (r = 0.54, p < 0.01) incremental and total AUC. In fact, when comparing the two meals with similar glycemic load but differing carbohydrate amount and type, very similar serum glucose and insulin responses were found. No differences were observed for serum free-fatty acids and glucagon profile in response to meal glycemic index. CONCLUSION: This study showed that foods of contrasting glycemic index induced a proportionally comparable difference in serum insulin response when provided in both small and large meals. The same was true for the serum glucose response but only in large meals. Glycemic load was useful in predicting the acute impact on blood glucose and insulin responses within the context of mixed meals
Microbunching instability characterization via temporally modulated laser pulses
High-brightness electron bunches, such as those generated and accelerated in
free-electron lasers (FELs), can develop small-scale structure in the
longitudinal phase space. This causes variations in the slice energy spread and
current profile of the bunch which then undergo amplification, in an effect
known as the microbunching instability. By imposing energy spread modulations
on the bunch in the low-energy section of an accelerator, using an undulator
and a modulated laser pulse in the centre of a dispersive chicane, it is
possible tomanipulate the bunch longitudinal phase space. This allows for the
control and study of the instability in unprecedented detail. We report
measurements and analysis of such modulated electron bunches in the
2Dspectro-temporal domain at the FERMI FEL, for three different bunch
compression schemes. We also perform corresponding simulations of these
experiments and show that the codes are indeed able to reproduce the
measurements across a wide spectral range. This detailed experimental
verification of the ability of codes to capture the essential beam dynamics of
the microbunching instability will benefit the design and performance of future
FELs
Microbunching instability characterization via temporally modulated laser pulses
High-brightness electron bunches, such as those generated and accelerated in free-electron lasers (FELs), can develop small-scale structure in the longitudinal phase space. This causes variations in the slice energy spread and current profile of the bunch which then undergo amplification, in an effect known as the microbunching instability. By imposing energy spread modulations on the bunch in the low-energy section of an accelerator, using an undulator and a modulated laser pulse in the center of a dispersive chicane, it is possible to manipulate the bunch longitudinal phase space. This allows for the control and study of the instability in unprecedented detail. We report measurements and analysis of such modulated electron bunches in the 2D spectrotemporal domain at the Fermi FEL, for three different bunch compression schemes. We also perform corresponding simulations of these experiments and show that the codes are indeed able to reproduce the measurements across a wide spectral range. This detailed experimental verification of the ability of codes to capture the essential beam dynamics of the microbunching instability will benefit the design and performance of future FELs
- …