15 research outputs found
Respiratory muscle training positively affects vasomotor response in young healthy women
Vasomotor response is related to the capacity of the vessel to maintain vascular tone within a narrow range. Two main control mechanisms are involved: the autonomic control of the sympathetic neural drive (global control) and the endothelial smooth cells capacity to respond to mechanical stress by releasing vasoactive factors (peripheral control). The aim of this study was to evaluate the effects of respiratory muscle training (RMT) on vasomotor response, assessed by flow-mediated dilation (FMD) and heart rate variability, in young healthy females. The hypothesis was that RMT could enhance the balance between sympa- thetic and parasympathetic neural drive and reduce vessel shear stress. Thus, twenty-four women were randomly assigned to either RMT or SHAM group. Maximal inspiratory mouth pressure and maximum voluntary ventilation were utilized to assess the effectiveness of the RMT program, which consisted of three sessions of isocapnic hyperventilation/ week for eight weeks, (twenty-four training sessions). Heart rate variability assessed autonomic bal- ance, a global factor regulating the vasomotor response. Endothelial function was deter- mined by measuring brachial artery vasodilation normalized by shear rate (%FMD/SR). After RMT, but not SHAM, maximal inspiratory mouth pressure and maximum voluntary ventilation increased significantly (+31% and +16%, respectively). Changes in heart rate variability were negligible in both groups. Only RMT exhibited a significant increase in % FMD/SR (+45%; p\u3c0.05). These data suggest a positive effect of RMT on vasomotor response that may be due to a reduction in arterial shear stress, and not through modulation of sympatho-vagal balance
Satellite cell proliferation is reduced in muscles of obese Zucker rats but restored with loading
The obese Zucker rat (OZR) is a model of metabolic syndrome, which has lower skeletal muscle size than the lean Zucker rat (LZR). Because satellite cells are essential for postnatal muscle growth, this study was designed to determine whether reduced satellite cell proliferation contributes to reduced skeletal mass in OZR vs. LZR. Satellite cell proliferation was determined by a constant-release 5-bromo-2-deoxyuridine (BrdU) pellet that was placed subcutaneously in each animal. Satellite cell proliferation, as determined by BrdU incorporation, was significantly attenuated in control soleus and plantaris muscles of the OZR compared with that shown in the LZR. To determine whether this attenuation of satellite cell activity could be rescued in OZR muscles, soleus and gastrocnemius muscles were denervated, placing a compensatory load on the plantaris muscle. In the LZR and the OZR after 21 days of loading, increases of ∼25% and ∼30%, respectively, were shown in plantaris muscle wet weight compared with that shown in the contralateral control muscle. The number of BrdU-positive nuclei increased similarly in loaded plantaris muscles from LZR and OZR. Myogenin, MyoD, and Akt protein expressions were lower in control muscles of OZR than in those of the LZR, but they were all elevated to similar levels in the loaded plantaris muscles of OZR and LZR. These data indicate that metabolic syndrome may reduce satellite cell proliferation, and this may be a factor that contributes to the reduced mass in control muscles of OZR; however, satellite cell proliferation can be restored with compensatory loading in OZR
Response of XIAP, ARC, and FLIP apoptotic suppressors to 8 wk of treadmill running in rat heart and skeletal muscle
Although it has been demonstrated that exercise training has an antiapoptotic effect on postmitotic myocytes. the mechanisms responsible for this effect are still largely unclear. Because the antiapoptotic effect of exercise training in postmitotic myocytes could be possibly mediated by the upregulation of apoptotic suppressors, this study examined the effect of endurance training on endogenous apoptotic suppressors including X-chromosome-linked inhibitor of apoptosis protein (XIAP), apoptosis repressor with caspases recruitment domain protein (ARC), and FADD-like inhibitor protein (FLIP) in skeletal and cardiac muscles. Eight adult Sprague-Dawley rats were trained 5 days weekly for 8 wk on treadmill, and eight sedentary rats served as controls. Soleus and ventricle muscles were dissected 2 days after the last training session. The mRNA content of XIAP, ARC, and FLIP was estimated by RT-PCR with ribosomal 18S RNA used as an internal control. The protein expression of XIAP, ARC, FLIP S , and FLIP α was assessed by Western immunoblot. After training, mRNA content of ARC and FLIP was not different between the control and trained animals, whereas XIAP mRNA content was elevated by 22 and 14% in the trained soleus and cardiac muscles, respectively, relative to the control samples. No difference was found in the protein content of FLIP S and FLIP α between control and trained muscles, whereas XIAP and ARC protein content was increased by 18 and 38%, respectively, in the soleus muscle of trained animals. Furthermore, negative relationships were found between XIAP and apoptotic DNA fragmentation as well as ARC and caspase-3 activity. These findings are consistent with the hypothesis that the modulation of apoptotic suppressors is involved in training-induced attenuation of apoptosis in skeletal and cardiac muscles. Copyright © 2005 the American Physiological Society.Link_to_subscribed_fulltex
Apoptotic adaptations from exercise training in skeletal and cardiac muscles
Link_to_subscribed_fulltex
Citrate synthase expression and enzyme activity after endurance training in cardiac and skeletal muscles
The present study was designed to examine the acute and chronic effects of endurance treadmill training on citrate synthase (CS) gene expression and enzymatic activity in rat skeletal and cardiac muscles. Adult rats were endurance trained for 8 wk on a treadmill. They were killed 1 h (T 1 , n = 8) or 48 h (T 48 , n = 8) after their last bout of exercise training. Eight rats were sedentary controls (C) during the training period. CS mRNA levels and enzymatic activities of the soleus and ventricle muscles were determined. Training resulted in higher CS mRNA levels in both the soleus muscles (21% increase in T 1 ; 18% increase in T 48 , P < 0.05) and ventricle muscles (23% increase in T 1 ; 17% increase in T 48 , P < 0.05) when compared with the C group. The CS enzyme activities were 42 (P < 0.01) and 25% (P < 0.01) greater in the soleus muscles of T 1 and T 48 groups, respectively, when compared with that of the C group. Soleus CS enzyme activity was significantly greater in the T 1 vs. T 48 groups (P < 0.05). However, no appreciable alterations in CS enzyme activities were observed in the ventricle muscles in both training groups. These findings suggest differential responses of skeletal and cardiac muscles in CS enzymatic activity but similar responses in CS gene expression at 1 and 48 h after the last session of endurance training. Moreover, our data support the existence of an acute effect of exercise on the training-induced elevation in CS activity in rat soleus but not ventricle muscles.Link_to_subscribed_fulltex
Myogenin and oxidative enzyme gene expression levels are elevated in rat soleus muscles after endurance training
The intent of this study was to determine whether endurance exercise training regulates increases in metabolic enzymes, which parallel modulations of myogenin and MyoD in skeletal muscle of rats. Adult Sprague-Dawley rats were endurance trained (TR) 5 days weekly for 8 wk on a motorized treadmill. They were killed 48 h after their last bout of exercise. Sedentary control (Con) rats were killed at the same time as TR animals. Myogenin, MyoD, citrate synthase (CS), cytochrome-c oxidase (COX) subunits II and VI, lactate dehydrogenase (LDH), and myosin light chain mRNA contents Were determined in soleus muscles by using RT-PCR. Myogenin mRNA content was also estimated by using dot-blot hybridization. Protein expression levels of myogenin and MyoD were measured by Western blots. CS enzymatic activity was also measured. RT-PCR measurements showed that the mRNA contents of myogenin, CS, COX II, COX VI, and LDH were 25, 20, 17, 16, and 18% greater, respectively, in TR animals compared with Con animals (P < 0.05). The ratio of myogenin to MyoD mRNA content estimated by RT-PCR in TR animals was 28% higher than that in Con animals (P < 0.05). Myosin light chain expression was similar in Con and TR muscles. Results from dot-blot hybridization to a riboprobe further confirmed the increase in myogenin mRNA level in TR group. Western blot analysis indicated a 24% greater level of myogenin protein in TR animals compared with Con animals (P < 0.01). The soleus muscles from TR animals had a 25% greater CS enzymatic activity than the Con animals (P < 0.01). Moreover, myogenin mRNA and protein contents were positively correlated to CS activity and mRNA contents of CS, COX II, and COX VI (P < 0.05). These data are consistent with the hypothesis that myogenin is in the pathway for exercise-induced changes in mitochondrial enzymes.Link_to_subscribed_fulltex
Mitochondrial apoptotic signaling is elevated in cardiac but not skeletal muscle in the obese Zucker rat and is reduced with aerobic exercise
Mitochondrial apoptosis and apoptotic signaling modulations by aerobic training were studied in cardiac and skeletal muscles of obese Zucker rats (OZR), a rodent model of metabolic syndrome. Comparisons were made between left ventricle, soleus, and gastrocnemius muscles from OZR (n = 16) and aged-matched lean Zucker rats (LZR; n = 16) that were untrained (n = 8) or aerobically trained on a treadmill for 9 wk (n = 8). Cardiac Bcl-2 protein expression levels were ∼50% lower in the OZR compared with the LZR, with no difference in either of the skeletal muscles. Bax protein expression levels were similar in skeletal muscles of the OZR compared with the LZR. Furthermore, mitochondrial apoptotic signaling was not different in skeletal muscles of OZR and LZR groups. However, there was an approximate sevenfold increase in the Bax protein accumulation in the myocardial mitochondrial-rich protein fraction of the OZR compared with the LZR. Additionally, there was an increase in cytosolic cytochrome c released from the mitochondria, caspase-9 and caspase-3 activity, with a corresponding elevation in DNA fragmentation in the cardiac muscles of the OZR compared with the LZR. Exercise training reduced cardiac Bax protein levels, the mitochondrial localization of Bax, cytosolic cytochrome c, caspase activity, and DNA fragmentation in cardiac muscles of the OZR after exercise, with no change in the skeletal muscles. These data show that mitochondrial apoptosis is elevated in the cardiac but not skeletal muscles of the OZR, but aerobic exercise training was effective in reducing cardiac mitochondrial apoptotic signaling
Respiratory muscle training positively affects vasomotor response in young healthy women.
Vasomotor response is related to the capacity of the vessel to maintain vascular tone within a narrow range. Two main control mechanisms are involved: the autonomic control of the sympathetic neural drive (global control) and the endothelial smooth cells capacity to respond to mechanical stress by releasing vasoactive factors (peripheral control). The aim of this study was to evaluate the effects of respiratory muscle training (RMT) on vasomotor response, assessed by flow-mediated dilation (FMD) and heart rate variability, in young healthy females. The hypothesis was that RMT could enhance the balance between sympathetic and parasympathetic neural drive and reduce vessel shear stress. Thus, twenty-four women were randomly assigned to either RMT or SHAM group. Maximal inspiratory mouth pressure and maximum voluntary ventilation were utilized to assess the effectiveness of the RMT program, which consisted of three sessions of isocapnic hyperventilation/ week for eight weeks, (twenty-four training sessions). Heart rate variability assessed autonomic balance, a global factor regulating the vasomotor response. Endothelial function was determined by measuring brachial artery vasodilation normalized by shear rate (%FMD/SR). After RMT, but not SHAM, maximal inspiratory mouth pressure and maximum voluntary ventilation increased significantly (+31% and +16%, respectively). Changes in heart rate variability were negligible in both groups. Only RMT exhibited a significant increase in %FMD/SR (+45%; p<0.05). These data suggest a positive effect of RMT on vasomotor response that may be due to a reduction in arterial shear stress, and not through modulation of sympatho-vagal balance