12 research outputs found

    The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation

    Get PDF
    Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6 degrees x19.2 degrees (26 mm focal length at 283 mu rad/pixel) to 6.2 degrees x4.6 degrees (110 mm focal length at 67.4 mu rad/pixel). The cameras can resolve (>= 5 pixels) similar to 0.7 mm features at 2 m and similar to 3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648x1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3 degrees total toe-in on a camera plate similar to 2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions

    Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation

    Get PDF
    Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission’s Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover’s Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover’s traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover’s sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions

    The Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation

    Get PDF
    Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission’s Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover’s Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover’s traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover’s sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions

    Computer science : an overview / J. Glenn Brookshear and Dennis Brylow ; global edition contributions by Manasa S.

    No full text
    Previous edition 2012.Includes bibliographical references and index.640 pages :This classic book provides an overview to the field of computing, with new material on networking, C#, XML, and Java, making it the most current book available. The seventh edition has been thoroughly updated to discuss important trends in such areas as networking and the Internet, software engineering, public-key encryption, and artificial intelligence. The discussions of the ethical and legal issues revolving around computing have been expanded in this edition. This book is for those who are interested in taking a tour of the field of computer science, as well as those taking an introductory course on these topics

    Deadline analysis of interrupt-driven software

    Get PDF
    Real-time, reactive, and embedded systems are increasingly used throughout society (e.g., flight control, railway signaling, vehicle management, medical devices, and many others). For real-time, interrupt-driven software, timely interrupt handling is part of correctness. It is vital for software verification in such systems to check that all specified deadlines for interrupt handling will be met. Such verification is a daunting task because of the large number of different possible interrupt arrival scenarios. For example, for a Z86-based microcontroller, there can be up to six interrupt sources and each interrupt can arrive during any clock cycle. Verification of such systems has traditionally relied upon lengthy and tedious testing; even under the best of circumstances, testing is likely to cover only a fraction of the state space in interrupt-driven systems. This paper presents the Zilog Architecture Resource Bounding Infrastructure (ZARBI), a tool for deadline analysis of interrupt-driven Z86-based software. The main idea is to use static analysis to significantly decrease the required testing effort by automatically identifying and isolating the segments of code that need the most testing. Our tool combines multi-resolution static analysis and testing oracles in such a way that only the oracles need to be verified by testing. Each oracle specifies the worst-case execution time from one program point to another, which is then used by the static analysis to improve precision. For six commercial microcontroller systems, our experiments show that a moderate number of testing oracles are sufficient to do precise deadline analysis

    End-to-end verification of stack-space bounds for C programs

    No full text

    Proving the Absence of Stack Overflows

    No full text

    Nexos

    No full text
    corecore