55 research outputs found

    Water-soluble hybrid materials based on {Mo₆X₈}⁴⁺ (X = Cl, Br, I) cluster complexes and sodium polystyrene sulfonate

    Get PDF
    Development of water-soluble forms of octahedral molybdenum clusters {Mo₆X₈}⁴⁺ (X = Cl, Br, I) is strongly motivated by the tremendous potential that these complexes have for biological applications, namely as agents for bioimaging and photodynamic therapy. In these work we report the first water-soluble hybrid materials, which represent sodium polystyrene sulfonate doped by molybdenum clusters, and evaluation of their photophysical and biological properties (dark and photoinduced cytotoxicity and cellular uptake) with the use of cervical cancer (HeLa) and human epidermoid larynx carcinoma (Hep-2) cell-lines as models

    Luminescent coordination polymers based on Ca²⁺ and octahedral cluster anions [{M₆Clⁱ₈}Clᵃ₆}²⁻ (M = Mo, W) : synthesis and thermal stability studies

    Get PDF
    Luminescent coordination polymers (CPs) based of inexpensive stable precursors are attractive materials for applications. Here we report the synthesis and evaluation of the stability and photophysical characteristics of the first examples of phosphorescent CPs based on octahedral molybdenum and tungsten cluster anions. Specifically 1D CP trans-[{Ca(OPPh₃)₄}{{M₆Clⁱ₈}Clᵃ₆}]∞ (M = Mo, W) can be obtained either directly at increased temperature or via intermediate phases [cis-Ca(OPPh₃)₄(H₂O)₂][{M₆Clⁱ₈}Clᵃ₆]∙2CH₃CN that are stable at room-temperature, but convert to the titled CP at temperatures above 100 °C

    Cellular internalisation, bioimaging and dark and photodynamic cytotoxicity of silica nanoparticles doped by {Mo₆I₈}⁴⁺ metal clusters

    Get PDF
    Silica nanoparticles (SNPs) doped by hexanuclear molybdenum cluster complexes [{Mo₆X₈}L₆]n (X = Cl, Br, or I; L = various inorganic or organic ligands) have been recently suggested as materials with a high potential for biomedical applications due to both the outstanding photoluminescent properties and the ability to efficiently generate singlet oxygen upon photoirradiation. However, no studies were undertaken so far to prove this concept. Therefore, here we examined the potential of photoluminescent SNPs doped by {Mo₆I₈}⁴⁺ for such applications as bioimaging and photodynamic therapy using human epidermoid larynx carcinoma (Hep-2) cell line as a model. Our results demonstrated both: (i) significant luminescence from cells with internalised molybdenum cluster doped SNPs combined with the low cytotoxicity of particles in the darkness and (ii) significant cytotoxicity of the particles upon photoirradiation. Thus, this research provides strong experimental evidence for high potential of molybdenum cluster doped materials in such biomedical applications as optical bioimaging, biolabeling and photodynamic therapy

    A comparative study of hydrophilic phosphine hexanuclear rhenium cluster complexes’ toxicity

    Get PDF
    Octahedral rhenium cluster compound Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] has recently emerged as a very promising X-ray contrast agent for biomedical applications. However, the synthesis of this compound is rather challenging due to difficulty to control the hydrolysis of initial P(C2H4CN)3 ligand during the reaction process. Therefore, in this report we compare the in vitro and in vivo toxicity of Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] with those of related compounds featuring fully hydrolysed form of the phosphine ligand, namely Na2H14[{Re6Q8}(P(C2H4COO)3)6] (Q = S or Se). Our results demonstrate that cytotoxicity and acute in vivo toxicity of the complex Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6] solutions were considerably lower than those of compounds with fully hydrolysed ligand P(C2H4COOH)3. Such behavior can be explained by the higher osmolality of Na2H14[{Re6Q8}(P(C2H4COO)3)6] versus Na2H8[{Re6Se8}(P(C2H4CONH2)(C2H4COO)2)6]

    Pharmacoeconomic analysis of the use of first- and second-line drugs in the treatment of multiple sclerosis

    Get PDF
    Objective: to make a pharmacoeconomic comparison of the administration of first- and second-line drugs in the treatment of multiple sclerosis through cost, cost-effectiveness, and budget impact analyses using the 2015 state prices.Material and methods. A pharmacoeconomic analysis was carried out on the basis of the data available in the literature on trials of the effects of the drugs on the rates of exacerbations and disability. On calculating, the authors took into account the current standards for the out- and inpatient management of patients with this nosological entity in accordance with the compulsory health insurance (CHI) program; prices for state drug purchases in March 2015; prices for medical services in compliance with the CHI standards in Moscow in 2015; the average sizes of minimum wage, salary, and disability grants with consideration for a discount rate of 3%. The cost-effectiveness and budget impact analyses were performed for intramuscular interferon (INF)-β1a (avonex, 30 μg), subcutaneous INF-β1a (rebif, 44 μg), subcutaneous INF-β1b (ronbetal, 8,000,000 IU), subcutaneous INF-β1b (betaferon, 9,600,000 IU), subcutaneous glatiramer acetate (copaxone, 20 mg), intravenous natalizumab (tyzabri, 300 mg), and oral fingolimod (gilenya, 0.5 mg).Results and discussion. The second-line drug tyzabri outperforms the first-line agents for cost-effectiveness. The first-line drugs betaferon and copaxone is slightly exceeded in this indicator by tyzabri; the other both first- and second-line agents compared are all the more inferior in this indicator. The budget impact analysis has shown that the cost of the second-line drugs was higher than that of the first-line ones

    Sensing activity of cholinesterases through a luminescence response of the hexarhenium cluster complex [{Re<inf>6</inf>S<inf>8</inf>}(OH)<inf>6</inf>]<sup>4-</sup>

    Get PDF
    © 2016 The Royal Society of Chemistry.The present work describes a new method to sense cholinesterase-catalyzed hydrolysis of acetylcholine (ACh) through a luminescence response of the hexarhenium cluster complex [{Re6S8}(OH)6]4-. A proton released from acetylcholinesterase (AChE)- or butyrylcholinesterase (BuChE)-catalyzed hydrolysis of ACh results in time-resolved sensitization of cluster-centered luminescence. The sensitization results from protonation of apical hydroxo-groups of the cluster complex. The protonation is affected by a counter ion effect. Thus, optimal conditions for adequate sensing of acetic acid produced by ACh hydrolysis are highlighted. Time-resolved luminescence and pH measurements under conditions of AChE-catalyzed hydrolysis of ACh show a good correlation between the cluster-centered luminescence and pH-induced inhibition of AChE. The inhibition is not significant within the first two minutes of ACh hydrolysis. Thus, the luminescence response measured within two minutes is dependent on both substrate and enzyme concentrations, which fits with AChE and BuChE kinetics. The usability of cluster-centered luminescence for monitoring the concentration-dependent inhibition of AChE with irreversible inhibitors is demonstrated, using a carbamylating agent, pyridostigmine bromide, as a model

    Clinical trials in pediatric ALS: a TRICALS feasibility study.

    Get PDF
    Background: Pediatric investigation plans (PIPs) describe how adult drugs can be studied in children. In 2015, PIPs for Amyotrophic Lateral Sclerosis (ALS) became mandatory for European marketing-authorization of adult treatments, unless a waiver is granted by the European Medicines Agency (EMA).Objective: To assess the feasibility of clinical studies on the effect of therapy in children (<18 years) with ALS in Europe.Methods: The EMA database was searched for submitted PIPs in ALS. A questionnaire was sent to 58 European ALS centers to collect the prevalence of pediatric ALS during the past ten years, the recruitment potential for future pediatric trials, and opinions of ALS experts concerning a waiver for ALS.Results: Four PIPs were identified; two were waived and two are planned for the future. In total, 49 (84.5%) centers responded to the questionnaire. The diagnosis of 44,858 patients with ALS was reported by 46 sites; 39 of the patients had an onset < 18 years (prevalence of 0.008 cases per 100,000 or 0.087% of all diagnosed patients). The estimated recruitment potential (47 sites) was 26 pediatric patients within five years. A majority of ALS experts (75.5%) recommend a waiver should apply for ALS due to the low prevalence of pediatric ALS.Conclusions: ALS with an onset before 18 years is extremely rare and may be a distinct entity from adult ALS. Conducting studies on the effect of disease-modifying therapy in pediatric ALS may involve lengthy recruitment periods, high costs, ethical/legal implications, challenges in trial design and limited information

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Computing linkage disequilibrium aware genome embeddings using autoencoders

    Get PDF
    Motivation The completion of the genome has paved the way for genome-wide association studies (GWAS), which explained certain proportions of heritability. GWAS are not optimally suited to detect non-linear effects in disease risk, possibly hidden in non-additive interactions (epistasis). Alternative methods for epistasis detection using, e.g. deep neural networks (DNNs) are currently under active development. However, DNNs are constrained by finite computational resources, which can be rapidly depleted due to increasing complexity with the sheer size of the genome. Besides, the curse of dimensionality complicates the task of capturing meaningful genetic patterns for DNNs; therefore necessitates dimensionality reduction. Results We propose a method to compress single nucleotide polymorphism (SNP) data, while leveraging the linkage disequilibrium (LD) structure and preserving potential epistasis. This method involves clustering correlated SNPs into haplotype blocks and training per-block autoencoders to learn a compressed representation of the block’s genetic content. We provide an adjustable autoencoder design to accommodate diverse blocks and bypass extensive hyperparameter tuning. We applied this method to genotyping data from Project MinE, and achieved 99% average test reconstruction accuracy—i.e. minimal information loss—while compressing the input to nearly 10% of the original size. We demonstrate that haplotype-block based autoencoders outperform linear Principal Component Analysis (PCA) by approximately 3% chromosome-wide accuracy of reconstructed variants. To the extent of our knowledge, our approach is the first to simultaneously leverage haplotype structure and DNNs for dimensionality reduction of genetic data
    corecore