20 research outputs found

    The organization of amyloid-β protein precursor intracellular domain-associated protein-1 in the rat forebrain

    Get PDF
    Sustained activity-dependent synaptic modifications require protein synthesis. Although proteins can be synthesized locally in dendrites, long-term changes also require nuclear signaling. Amyloid-β protein precursor intracellular domain-associated protein-1 (AIDA-1), an abundant component of the biochemical postsynaptic density fraction, contains a nuclear localization sequence, making it a plausible candidate for synapse-to-nucleus signaling. We used immunohistochemistry to study the regional, cellular, and subcellular distribution of AIDA-1. Immunostaining was prominent in the hippocampus, cerebral cortex, and neostriatum. Along with diffuse staining of neuropil, fluorescence microscopy revealed immunostaining of excitatory synapses throughout the forebrain, and immunoreactive puncta within and directly outside the nucleus. Presynaptic staining was conspicuous in hippocampal mossy fibers. Electron microscopic analysis of material processed for postembedding immunogold revealed AIDA-1 label within postsynaptic densities in both hippocampus and cortex. Together with previous work, these data suggest that AIDA-1 serves as a direct signaling link between synapses and the nucleus in adult rat brain

    Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release

    Get PDF
    Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB1)-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB1-expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain

    Coordination between Translation and Degradation Regulates Inducibility of mGluR-LTD

    Get PDF
    Dendritic protein homeostasis is crucial for most forms of long-term synaptic plasticity, and its dysregulation is linked to a wide range of brain disorders. Current models of metabotropic glutamate receptor mediated long-term depression (mGluR-LTD) suggest that rapid, local synthesis of key proteins is necessary for the induction and expression of LTD. Here, we find that mGluR-LTD can be induced in the absence of translation if the proteasome is concurrently inhibited. We report that enhanced proteasomal degradation during the expression of mGluR-LTD depletes dendritic proteins and inhibits subsequent inductions of LTD. Moreover, proteasome inhibition can rescue mGluR-LTD in mice null for the RNA binding protein Sam68, which we show here lack mGluR-dependent translation and LTD. Our study provides mechanistic insights for how changes in dendritic protein abundance regulate mGluR-LTD induction. We propose that Sam68-mediated translation helps to counterbalance degradation, ensuring that protein levels briefly remain above a permissive threshold during LTD induction

    Estrogen activates Alzheimer's disease genes

    No full text
    Introduction: Women are at increased risk for Alzheimer's disease (AD), but the reason why remains unknown. One hypothesis is that low estrogen levels at menopause increases vulnerability to AD, but this remains unproven. Methods: We compared neuronal genes upregulated by estrogen in ovariectomized female rhesus macaques with a database of >17,000 diverse gene sets and applied a rare variant burden test to exome sequencing data from 1208 female AD patients with the age of onset < 75 years and 2162 female AD controls. Results: We found a striking overlap between genes upregulated by estrogen in macaques and genes downregulated in the human postmortem AD brain, and we found that estrogen upregulates the APOE gene and that progesterone acts antagonistically to estrogen genome-wide. We also found that female patients with AD have excess rare mutations in the early menopause gene MCM8. Discussion: We show with genomic data that the menopausal loss of estrogen could underlie the increased risk for AD in women

    Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice

    No full text
    Transmembrane adaptor proteins (TRAPs) are important organisers for the transduction of immunoreceptor-mediated signals. Prr7 is a TRAP that regulates T cell receptor (TCR) signalling and potently induces cell death when overexpressed in human Jurkat T cells. Whether endogenous Prr7 has a similar functional role is currently unknown. To address this issue, we analysed the development and function of the immune system in Prr7 knockout mice. We found that loss of Prr7 partially impairs development of single positive CD4+ T cells in the thymus but has no effect on the development of other T cell subpopulations, B cells, NK cells, or NKT cells. Moreover, Prr7 does not affect the TCR signalling pathway as T cells derived from Prr7 knockout and wild-type animals and stimulated in vitro express the same levels of the activation marker CD69, and retain their ability to proliferate and activate induced cell death programs. Importantly, Prr7 knockout mice retained the capacity to mount a protective immune response when challenged with Listeria monocytogenes infection in vivo. In addition, T cell effector functions (activation, migration, and reactivation) were normal following induction of experimental autoimmune encephalomyelitis (EAE) in Prr7 knockout mice. Collectively, our work shows that loss of Prr7 does not result in a major immune system phenotype and suggests that Prr7 has a dispensable function for TCR signalling
    corecore