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SUMMARY 2008). However, whether an acute increase in PRP levels is suf-
Dendritic protein homeostasis is crucial for most
forms of long-term synaptic plasticity, and its dysre-
gulation is linked to a wide range of brain disorders.
Current models of metabotropic glutamate receptor
mediated long-term depression (mGluR-LTD) sug-
gest that rapid, local synthesis of key proteins is
necessary for the induction and expression of LTD.
Here, we find that mGluR-LTD can be induced in
the absence of translation if the proteasome is
concurrently inhibited. We report that enhanced pro-
teasomal degradation during the expression of
mGluR-LTD depletes dendritic proteins and inhibits
subsequent inductions of LTD. Moreover, protea-
some inhibition can rescue mGluR-LTD in mice null
for the RNA binding protein Sam68, which we show
here lack mGluR-dependent translation and LTD.
Our study provides mechanistic insights for how
changes in dendritic protein abundance regulate
mGluR-LTD induction. We propose that Sam68-
mediated translation helps to counterbalance degra-
dation, ensuring that protein levels briefly remain
above a permissive threshold during LTD induction.
INTRODUCTION

Coordination between the translational machinery, RNA binding

proteins (RBPs), and the proteasome regulates dendritic proteo-

stasis in response to neuronal activity (Hanus and Schuman,

2013). Mutations in components of these systems are associ-

ated with altered long-term synaptic depression induced by me-

tabotropic glutamate receptor activation (mGluR-LTD) and may

underlie the pathogenesis of certain autism spectrum disorders.

Current models of mGluR-LTD suggest that elevated levels of

key synaptic proteins are required for LTD induction and expres-

sion (Lüscher and Huber, 2010). Several plasticity-related pro-

teins (PRPs), including ARC (Park et al., 2008; Waung et al.,

2008), OPHN1 (Nadif Kasri et al., 2011), FMRP (Todd et al.,

2003), APP (Westmark and Malter, 2007), and PSD95 (Mudda-

shetty et al., 2007), are rapidly synthesized following mGluR acti-

vation. Knockdown experiments have demonstrated a necessity

for ARC andOPHN1 in LTD (Nadif Kasri et al., 2011;Waung et al.,
Cell
ficient to induce mGluR-LTD is unclear (Di Prisco et al., 2014;

Niere et al., 2012; Park et al., 2008).

Along with protein synthesis, proteasomal degradation regu-

lates synaptic protein abundance (Ehlers, 2003). Proteasomal

subunits and E3 ligases present in dendrites can be transported

into active spines to alter synaptic PRP levels (Bingol and Schu-

man, 2006). Degradation of ARC, FMRP, and PSD95 by the pro-

teasome is important for regulating AMPA receptor endocytosis

and spine morphology (Greer et al., 2010; Mabb et al., 2014; Na-

lavadi et al., 2012; Tsai et al., 2012). However, previous reports

on the role of proteasome in mGluR-LTD are conflicting (Citri

et al., 2009; Hou et al., 2006).

Functional impairment of the RBP Src-associated in Mitosis

68kD (Sam68) has been observed in patients diagnosed with

the neurodegenerative disorder fragile X tremor ataxia syndrome

(FXTAS), which is characterized by adult-onset ataxia and cogni-

tive decline (Lukong and Richard, 2008; Sellier et al., 2010). We

previously showed that Sam68 acts as a positive regulator of

local translation by promoting the association of b actin mRNA

with synaptic ribosomes (Klein et al., 2013). Sam68 binds to

the mRNAs of several PRPs, including ARC (Grange et al.,

2009), and likely coordinates mRNA metabolism in response to

neuronal activity (Ben Fredj et al., 2004; Iijima et al., 2011).

In this study, we elaborate on a current model of mGluR-LTD,

which states that rapid increases in translation of key proteins

are necessary for the induction and expression of LTD (Costa-

Mattioli et al., 2009; Lüscher and Huber, 2010). We demonstrate

that activation ofmGluRs rapidly depletes dendritic protein levels

by proteasomal degradation. This effect occurs despite the well-

established increase in protein synthesis during mGluR-LTD in-

duction. The concurrent increase in degradation and translation

during mGluR-LTD mediates metaplasticity by elevating the

threshold for subsequent inductions of LTD. Our findings sug-

gest that mGluR-LTD does not require an acute increase in den-

dritic PRP levels per se. Rather, protein translation is necessary

to counterbalance degradation and ensure that PRP levels briefly

remain above a permissive threshold during LTD induction.
RESULTS

Lack of ARC Translation and mGluR-LTD in Sam68 KO
Mice Reveals Proteasomal Degradation of ARC
To investigate how PRP levels change during mGluR-LTD in-

duction, we examined mice null for Sam68, an RBP that was
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Figure 1. Proteasome Inhibition Rescues mGluR-Triggered Trans-

lation of ARC and mGluR-LTD

(A) Hippocampal slices from Sam68 KO or WT mice were treated with vehicle

(VEH) or 50 mM (R,S)-3,5-DHPG for 5min. (S)-MG132 (5 mM)was added for 1 hr

before and during DHPG treatment. (Right) Densitometric quantification of

western blots normalized to GapDH. Each dot represents a separate experi-

ment consisting of pooled lysate from three slices. The average for each

condition was generated from eight separate experiments using slices from

four KO and WT mice. An asterisk denotes a significant difference from WT

(VEH). ([VEH] WT, 100.0 ± 4.2; KO, 99.0 ± 6.8; [DHPG] WT, 161.6 ± 12.7; KO,

60.5 ± 13.1; KO [MG132], 99.2 ± 14.9).

(B) Western blots (left) and scatter plot (right) showing time courses of protein

levels after three different treatments. (Left) Rat hippocampal slices were
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previously shown to promote translation of its mRNA cargos

(Klein et al., 2013; Paronetto et al., 2009). Sam68 binds to the

mRNA of ARC (Grange et al., 2009), a PRP necessary for

mGluR-LTD. We found no difference in the basal levels of ARC

protein in acute hippocampal slices prepared from Sam68 KO

mice and WT littermates. However, a brief application of the

mGluR group I (mGluR-I) agonist DHPG reduced levels of ARC

in slices from knockout (KO) animals, in contrast to the expected

increase in ARC protein (Park et al., 2008; Waung et al., 2008) in

slices from WT littermates (Figure 1A). This result not only indi-

cated that Sam68 promotes mGluR-dependent translation of

ARC, but also revealed that ARC may be degraded in an activ-

ity-dependent manner. Indeed, pretreating slices with the pro-

teasome inhibitor MG132 blocked this decrease (Figures 1A

and S2B), suggesting that mGluR-I stimulation led to proteaso-

mal degradation of ARC, evident in the KO mice presumably

due to their lack of mGluR-I-stimulated ARC protein synthesis.

This degradation was not unique to Sam68 KO mice as DHPG

application in WT slices induced a rapid and transient increase

in ARC levels followed by a prolonged decrease, which could

similarly be blocked by MG132. In contrast, levels of the cyto-

skeletal protein b actin did not change following DHPG applica-

tion (Figure 1B). Therefore, we found that ARC is rapidly depleted

by proteasomal degradation following mGluR activation in both

Sam68 KO and WT mice.

As ARC is necessary for mGluR-LTD, we measured plasticity

in the Sam68 KO mice and found that both chemically induced

(DHPG; Figure 1C) and synaptically induced (PP-LFS; Figures

1D and S1A) mGluR-LTD were reduced in KO animals compared

with WT littermates. The absence of Sam68 did not affect basal

synaptic transmission (Figures S1C–S1E) or translation-inde-

pendent NMDA-LTD (Figures S1F and S1G). While mammalian

target of rapamycin (mTOR) activity is reportedly decreased in
treated with 100 mM DHPG for 6 min (top, ARC [red circles] and actb [not

plotted]); vehicle (middle, ARC [open circles]) or 5 mM MG132 for 1 hr before

and during DHPG treatment (bottom, ARC [black circles]). Each time point

represents pooled lysate from three slices. (Right) Time course plot showing

DHPG application (shaded red area) results in sustained depletion in ARC

protein levels that is blocked by proteasome inhibition. Each dot represents

average ARC levels at indicated time points (n = 4 rats for DHPG, n = 2 rats for

VEH and MG132/DHPG).

(C) Extracellular field recordings (fEPSP) in acute hippocampal slices show

Sam68 KO mice (red filled circles) lack mGluR-LTD at Schaffer collateral

synapses induced by 50 mMDHPG for 5 min. MG132 (5 mM) for 1 hr before and

during DHPG treatment rescued LTD (red open circles). Dashed box indicates

time of DHPG application. Scale bars indicate 10 ms and 0.25 mV. (Right)

Average fEPSP slope during the last 5 min of recording (WT, 59.4 ± 3.9; KO,

91.9 ± 8.1; KO MG132, 59.8 ± 3.9).

(D) Sam68 KOmice lackmGluR-LTD induced by PP-LFS for 15min (2 pulses at

50 ms ISI, 1Hz). MG132 (5 mM) for 1 hr before and during PP-LFS rescued LTD

(WT, 67.7 ± 7.3; KO, 99.8 ± 6.5; KO MG132, 70.4 ± 8.1).

(E) Whole-cell recordings in voltage clamp (�60 mV) in acute hippocampal

slices (mouse) with an antisense oligonucleotide against ARC (AS, 150 mM,

filled red circles) or a scrambled oligo (Scr, 150 mM, filled black circles) loaded

into the patch pipette. Proteasomal inhibition rescues mGluR-LTD blocked by

acute knockdown of ARC synthesis by antisense oligonucleotides

(AS+MG132, red open circles) (Scr, 72.2 ± 8.2; AS, 120.3 ± 9.5; AS+MG132,

70.0 ± 9.1).

Summary data consist of mean ± SEM.
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Figure 2. Proteasomal Inhibition Increases Dendritic PRP Levels

with No Change in mGluR-LTD Magnitude

(A) Western blots of PRPs from rat microdissected S. Radiatum incubated in

5 mM MG132 for 1 hr or vehicle (APP, amyloid precursor protein; OPHN1,

oligophrenin 1; PSD95, post-synaptic density 95; FMRP, fragile X mental

retardation protein; ARC, activity-regulated cytoskeletal-associated protein;

actb, b-actin). (Right) Densitometric quantification shows brief proteasome

inhibition significantly increases dendritic levels of PSD95, ARC, and OPHN1

compared with vehicle condition (APP, 3.1 ± 6.5; PSD95, 27.4 ± 7.0; ARC,

61.5 ± 5.9; FMRP, 7.0 ± 4.7; OPHN1, 49.7 ± 10.4). The asterisk denotes

significantly different than vehicle.

(B andC)MG132 does not affect mGluR-LTD at Schaffer collateral synapses in

acute hippocampal slices. Dashed boxes show time of DHPG application

(mouse, 50 mM, 5 min; rat, 100 mM, 6 min). MG132 (5 mM) for 1 hr before and

during DHPG treatment does not change mGluR-LTDmagnitude in mice (B) or

rats (C). Scale bars indicate 10 ms and 0.25 mV. (Right) Average fEPSP slope

during the last 5 min of the recording ([mouse] VEH, 61.3 ± 2.6; MG132, 57.2 ±

2.8; [rat] VEH, 71.6 ± 4.7; MG132, 70.2 ± 8.1).

Summary data consist of mean ± SEM.
adipose tissue of Sam68 KO mice (Huot et al., 2012), we

observed normal phosphorylation of mTOR and S6 Kinase in

response to DHPG application, suggesting that mGluR signaling

and mTOR activity are intact in the hippocampus of Sam68 KO

mice (Figure S2A).

Inhibition of the Proteasome Rescues mGluR-LTD from
Loss of ARC Translation in Both Sam68 KO andWTMice
As treatment with MG132 prevented mGluR-mediated degrada-

tion of ARC in both Sam68 KO and WT mice, we next investi-
Cell
gated the consequences of proteasome inhibition on mGluR-

LTD. Blocking the degradation of ARC with MG132 fully rescued

both chemically and synaptically induced mGluR-LTD in the

Sam68 KO mice (Figures 1C and 1D). This rescue occurred

without a change in the paired-pulse ratio (PPR; Figure S1B)

andwas associated with changes in AMPAR surface expression,

consistent with classical, postsynapticmGluR-LTD. Virally medi-

ated knockdown of Sam68 blocked GluR1 internalization in

primary neuronal cultures following DHPG application and pre-

treatment with MG132 could rescue this effect (Figure S2D). To

determine whether proteasome inhibition could rescue acute

deficits in ARC translation, we introduced ARC antisense (ARC

AS) oligonucleotides into CA1 pyramidal neurons in acute slices

from WT mice by whole-cell patch pipette. Infusion of ARC AS

oligos, but not scrambled oligos (Scr), blocked mGluR-LTD

(Waung et al., 2008) (Figure 1E). Consistent with our experiments

in the Sam68 KO mice, inhibition of the proteasome was able to

rescue mGluR-LTD from the effects of the ARC AS oligos in WT

neurons (Figure 1E). Together, these results suggest that protea-

some inhibition allows for LTD to be induced in the absence of

mGluR-dependent ARC translation in either Sam68 KO or WT

animals.

Proteasome Inhibition Increases Dendritic PRP Levels
with No Change in mGluR-LTD Magnitude
We next investigated the effects of proteasome inhibition on

dendritic protein abundance in WT animals. Inhibition of the pro-

teasome for 1 hr significantly raised levels of ARC and other pro-

teins implicated in mGluR-LTD such as OPHN1 and PSD95,

above baseline in either microdissected S. Radiatum (Figure 2A)

or synaptosomal fractions prepared from acute hippocampal sli-

ces (Figure S3A). This acute increase in local PRP levels was not

accompanied by a change in baseline transmission or PPR

(Figure S3B), indicating that increased abundance of PRPs

alone, in the context of proteasomal blockade, is not sufficient

to induce a depression in baseline transmission. Additionally, in-

hibition of the proteasome for 1 hr had no effect on the magni-

tude of mGluR-LTD recorded in slices prepared from either

mice or rats (Figures 2B and 2C), suggesting that elevated PRP

levels may not be correlated with enhanced magnitude of

mGluR-LTD.

Proteasome Inhibition Rescues mGluR-LTD Blocked by
Inhibitors of Diverse Translational Pathways
Inhibition of the proteasome maintains basal ARC levels and

rescues mGluR-LTD in Sam68 KO animals (Figure 1). We

next tested whether proteasome inhibition could generally

rescue mGluR-LTD from deficits in other translational pathways.

Application of the translational blockers cycloheximide (CHX;

Figure 3A) or ansiomycin (ANISO; Figure S3C) inhibited

mGluR-LTD in WT rats and mice as expected (Huber et al.,

2000) and resulted in the rapid depletion of several PRPs from

synaptosomal fractions followingDHPGapplication (FigureS4A).

In contrast, coincubation with MG132 and CHX clamped synap-

tic protein levels at baseline (Figure S2C) and fully rescued the

ability of mGluR-LTD to be induced with DHPG. Therefore,

LTD could be reliably induced if synaptic protein levels were

clamped at baseline by concurrently inhibiting translation and
Reports 10, 1459–1466, March 10, 2015 ª2015 The Authors 1461



Figure 3. mGluR-LTD Persists in the

Absence of Translation if the Proteasome Is

Inhibited

(A) Field recordings from acute hippocampal slices

(mouse and rat) treated with either 60 mM CHX

(blue) or 60 mM CHX and 5 mM MG132 (CHX/MG,

orange) for 1 hr. Dashed boxes show time of DHPG

application (mouse, 50 mM, 5 min; rat, 100 mM,

6 min). Scale bars indicate 10 ms and 0.25 mV.

(Right) Average fEPSP slope during the last 5 min of

recording indicates inhibiting the proteasome res-

cuesmGluR-LTD blocked by translational inhibition

([mouse] VEH, 61.3 ± 2.6; CHX, 94.7 ± 4.7;

CHX+MG132, 66.9 ± 3.9; [rat] VEH, 71.6 ± 5.2;

CHX, 91.2 ± 3.3; CHX+MG132, 67.7 ± 6.0).

(B) Concurrent field (black) and whole-cell re-

cordings (red) of mGluR-LTD (50 mMDHPG, 5 min)

from mouse slices. (Left) CHX (60 mM) included in

the perfusate blocked LTD (WC, 109 ± 12; field,

110 ± 6). (Middle) Lactacystin (1 mM) included in

the recording pipette, with vehicle in the perfusate

resulted in no significant difference in the amount

of LTD between the field and whole-cell re-

cordings (WC, 68.5 ± 7.7; field 67.7 ± 6.9). (Right) Lactacystin (1 mM) in the recording pipette and 60 mM CHX in bath blocked LTD in the field recordings, but

not in the whole-cell recordings (WC, 68.7 ± 11.5; field, 108.8 ± 10.3). Scale bars indicate 0.25 mV/50 pA and 10 ms.

Summary data consist of mean ± SEM.
the proteasome (Figures 3A and S3C). This mGluR-LTD under

protein-clamped conditions was similar to translation-depen-

dent, postsynaptically expressed mGluR-LTD in that it did not

manifest with a change in PPR and could be transiently reversed

bymGluR antagonists (Figure S4B) (Lodge et al., 2013). To deter-

mine whether additional translational pathways were similarly

affected by proteasome inhibition, we also measured mTOR-

sensitive mGluR-LTD (Hou and Klann, 2004). Consistent with

our previous results, inhibition of the proteasome rescues

mGluR-LTD blocked by rapamycin (Figure S3D). Thus, rescue

of translation-dependent mGluR-LTD by proteasome inhibition

is observed not only in Sam68 KO mice but also under various

conditions where PRP synthesis is inhibited.

To confirm that mGluR-LTD can be induced in the absence of

translation, we devised a set of internally controlled experiments

using concurrent field and whole-cell recordings in the same

slice. For these experiments, lactacystin, a proteasome inhibitor

mechanistically distinct from MG132, was loaded into the patch

pipette, and CHX or a vehicle was bath applied to the slice during

the recordings. Similar to MG132, application of lactacystin

resulted in increased PRP levels in synaptosomal fractions

(Figure S3A). With CHX in the perfusate and no lactacystin in

the pipette, mGluR-LTD was blocked in both the field and

whole-cell recordings (Figure 3B, left). With a vehicle in the

perfusate the magnitude of LTD measured from a single neuron

filled with lactacystin was indistinguishable from the magnitude

of LTD in the field recording (Figure 3B, middle). Finally, adding

CHX to the perfusate while simultaneously recording from a sin-

gle neuron loaded with lactacystin blocked extracellularly

measured LTD, but intracellularly measured LTD was normal

(Figure 3B, right). These results provide strong evidence that

mGluR-LTD can persist in the absence of an acute increase in

translation as long as PRP abundance is clamped at basal levels

by inhibiting the proteasome.
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Proteasomal Degradation following mGluR Activation
Rapidly Depletes PRPs and Inhibits Subsequent
Inductions of LTD
Our results thus far indicated an important role for the protea-

some in regulating dendritic ARC abundance during mGluR-

LTD induction. In addition to ARC we found decreased levels

of several other PRPs (APP, OPHN1, PSD95, and FMRP) in

S. Radiatum following DHPG application (e.g., 30 min post-

DHPGwashout) (Figures 4A and 4C). This decrease in PRP levels

was likely due to proteasomal degradation as inhibition of the

proteasome during LTD induction (DHPG+MGwash 30) resulted

in PRP levels remaining elevated 30 min after DHPG washout

(Figures 4B and 4C). Moreover, the decrease in dendritic PRP

levels was correlated with an increase in the ubiquitination of

ARC, APP, and PSD95 (Figure 4D), suggesting that enhanced

proteasomal degradation is a general mechanism for regulating

local PRP abundance during the induction of mGluR-LTD.

We hypothesized that proteasomal degradation of PRPsmight

regulate the inducibility of mGluR-LTD by rapidly depleting PRP

levels below a permissive threshold after an initial round of LTD,

thereby limiting subsequent inductions. Application of a sub-

threshold DHPG stimulus (3 min, 100 mM) produced a transient

depression, but failed to induce LTD in either vehicle or

MG132-treated hippocampal slices (Figure S4D). Furthermore,

if the proteasome was intact this subthreshold stimulus did not

result in any further depression if applied following a standard

stimulation protocol that was able to reliably induce LTD

(DHPG 6min, 100 mM; Figures 4E and S4C). However, if the pro-

teasome was inhibited during the initial induction of LTD,

then a subsequent subthreshold stimulus elicited a subsequent

round of LTD (Figure 4E). This metaplastic effect was sustained

throughout multiple rounds of subthreshold inductions

(Figure S4E). Therefore, while inhibition of the proteasome

does not lower the threshold for induction of an initial round of
s



Figure 4. Proteasomal Degradation fol-

lowing mGluR Activation Rapidly Depletes

PRPs and Inhibits Subsequent Inductions

of LTD

(A) Western blots of PRPs from rat microdissected

S. Radiatum prepared immediately after DHPG

treatment (100 mM, 6 min) or 30 min after DHPG

washout (DHPG wash 30).

(B) Western blots of PRPs from rat microdissected

S. Radiatum prepared 30 min after DHPG+MG132

washout (DHPG+MG wash 30). Slices in vehicle

condition were treated with only MG132 and no

DHPG.

(C) Densitometric analyses reveal DHPG appli-

cation transiently increased dendritic PRP levels

(DHPG) followed by a rapid depletion from peak

levels 30 min after washout (DHPG wash30).

PRP levels remain elevated if the proteasome

was inhibited with MG132 (DHPG+MG wash30)

during mGluR-LTD induction. Black bars indi-

cate PRP levels after DHPG treatment relative to

baseline conditions. Red bars indicate PRP

levels 30 min after DHPG washout relative to

levels immediately following DHPG treatment.

Blue bars indicate PRP levels 30 min after

DHPG+MG132 washout relative to control

(MG132 alone).

(D) Western blots show increased ubiquitination of

ARC, APP, and PSD95 after mGluR activation.

Acute hippocampal slices were treated with

vehicle, or DHPG (100 mM, 6 min), and lysed after

30 min of DHPG washout. Immunoprecipitations

were performed as indicated, and ubiquitination

was assessed by an anti-Ub Ab.

(E) (Left) Field recordings from acute hippo-

campal slices (rat) treated with a vehicle (VEH,

black) or 5 mM MG132 (MG132, red) for 1 hr. An

initial round of LTD was induced (100 mM DHPG,

6 min), followed by a subthreshold stimulus

(100 mM DHPG, 3 min). Dashed boxes show

time of DHPG application. (Right) For each

experiment, the magnitude of the initial LTD (1)

is plotted on the x axis with the magnitude of the

subsequent round of LTD (2), relative to the first, plotted on the y axis. Under vehicle conditions a subthreshold stimulus did not, on average, produce a

second round of LTD. However, inhibition of the proteasome allows for a subsequent round of LTD to be induced.

Summary data consist of mean ± SEM.
LTD, it does so for subsequent inductions of LTD. These results

suggest that enhanced proteasomal degradation ensures PRP

levels remain below a permissive threshold following an initial

LTD induction to limit subsequent inductions of LTD.

DISCUSSION

We find that the increase in PRPs following mGluR activation is

transient with dendritic levels of certain PRPs depleted to below

baseline within 30 min due to proteasomal degradation. In addi-

tion, we report that Sam68 KOmice lackmGluR-dependent ARC

translation and LTD. In thesemice, blocking the proteasome res-

cues mGluR-LTD, indicating that preserving basal ARC is suffi-

cient for LTD induction. In WT animals, mGluR-LTD can be

induced if levels of PRPs are clamped during mGluR activation

by concurrently blocking translation and proteasomal degrada-

tion. Similarly, concurrent inhibition of the proteasome also
Cell
relieves the block of mGluR-LTD due to ARC AS oligos or rapa-

mycin. Our findings show that increases in dendritic PRPs are not

necessary for translation-dependent mGluR-LTD. We propose

that mGluR-triggered translation serves to counterbalance

enhanced degradation ensuring PRP levels remain above a

permissive threshold during LTD induction. Increased ubiquitina-

tion followingmGluR activation allows for rapid depletion of local

PRP levels by the proteasome, which engages metaplasticity by

inhibiting subsequent inductions of LTD. Therefore, coordination

between translation and degradation by the ubiquitin-protea-

some-system regulates local protein abundance following

mGluR activation and the inducibility of synaptic plasticity.

The need to deplete PRP levels after an initial round of LTD

may arise from the persistence of mGluR signaling after agonist

washout. mGluR-LTD can be de-depressed (Figure S4B) by

transient application of mGluR antagonists, indicating sustained

mGluR signaling throughout the expression of LTD (Lodge et al.,
Reports 10, 1459–1466, March 10, 2015 ª2015 The Authors 1463



2013). In our model, mGluR-LTD induction is achieved by the

coincidence of PRP levels above a threshold and signaling

from mGluRs. If PRPs remained above threshold following an

initial round of LTD, persistent mGluR signaling could lead to

subsequent unintended inductions of LTD. HowmGluR signaling

persists in the absence of ligand is unknown. One interesting

possibility is that a brief application of agonist may alter the bind-

ing of mGluRs to intracellular partners such as Homer leading to

agonist-independent activity (Ango et al., 2001). Our results indi-

cate that enhanced proteasomal degradation following an initial

bout of mGluR-LTD ensures PRPs remain below threshold until

an appropriate activation is received for a subsequent round of

LTD. Increased ubiquitination of ARC, FMRP, and PSD95 has

been observed following synaptic stimulation, raising the possi-

bility that the enhanced degradation of PRPs we observe during

LTD induction is due to an mGluR-dependent increase in E3

ligase activity (Figures 4C and 4D) (Colledge et al., 2003; Hou

et al., 2006; Mabb et al., 2014; Nalavadi et al., 2012).

Inhibition of the protein synthesis-dependent, late-phase long-

term potentiation (L-LTP) by translational blockers is alleviated

by co-application of proteasome inhibitors (Fonseca et al.,

2006), suggesting common roles for translation and the protea-

some in regulating PRP abundance during mGluR-LTD and

L-LTP (Dong et al., 2014). In our model, synthesis and degrada-

tion are precisely coordinated during LTD induction to briefly

maintain dendritic PRP levels at a permissive threshold for

mGluR-LTD induction. Conversely, PRP levels below threshold

inhibit the induction of LTD even if themGluR signal is generated.

In this way, dendritic levels of ARC and other PRPs can act as

molecular switches for plasticity by determining if mGluR

signaling will induce LTD. If translation is inhibited either pharma-

cologically or genetically, as in Sam68 KO mice, degradation is

uncompensated, and DHPG application results in the rapid

depletion of PRPs from synapses (Figures 1A and S4A). Our re-

sults suggest that the block of LTD by translational inhibitorsmay

be due to uncompensated depletion of synaptic PRPs below a

permissive threshold, rather than a lack of acute PRP synthesis.

Basal levels of ARC protein can be influenced by previous acti-

vation, varying substantially between individual neurons

(Jakkamsetti et al., 2013). Several mechanisms exist to suppress

ARC expression, including activity-dependent as well as

nonsense-mediated mRNA decay (Farris et al., 2014; Giorgi

et al., 2007), poor initiation of ARC mRNA (Park et al., 2008),

and rapid turnover of ARC protein by the proteasome (Soulé

et al., 2012). The relative scarcity of ARC during basal conditions

allows for stimulus-induced increases in ARC to act as a plas-

ticity switch. For example, the dendritic seeding of ARC mRNA

in response to a brief, non-LTD inducing, novel experience in-

creases the likelihood that the activated neuron will subse-

quently undergo mGluR-LTD ex vivo (Jakkamsetti et al., 2013).

In the context of our findings, this dendritic seeding may ensure

enough substrate for mGluR-triggered translation to keep ARC

protein above the permissive threshold. Interestingly, repeated

exposures to a novel environment that may induce mGluR-LTD

in vivo, inhibits subsequent induction of mGluR-LTD ex vivo

(Jakkamsetti et al., 2013). This observation is consistent with

our model that enhanced proteasomal degradation following

an initial round of LTD inhibits subsequent inductions.
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We found that acute inhibition of the proteasome did not

decrease basal transmission or PPR even though certain den-

dritic PRPs increased to comparable levels to those observed

immediately following DHPG application (Figures 2A and 4A).

Thus, elevated PRPs alone are not sufficient to induce LTD,

which extends previous findings from dissociated cultures (Niere

et al., 2012; Park et al., 2008). Furthermore, increasing dendritic

PRP levels by inhibiting the proteasome prior to DHPG applica-

tion did not alter themagnitude of LTD, which is consistent with a

previous report showing no effect of MG132 on LTD inmice (Citri

et al., 2009). In another study, however, inhibiting the protea-

some reduced the magnitude of mGluR-LTD (Hou et al., 2006).

The reason for this discrepancy is unclear, but it could reflect

differences in the experimental designs. Because of the wide-

spread actions of MG132 or lactacystin on the neuronal prote-

ome, we cannot solely attribute the effects, or lack thereof,

specifically to the subset of PRPs we examined. However, we

find that blocking proteasome degradation during mGluR-LTD

unmasks a novel form of metaplasticity that facilitates subse-

quent rounds of LTD. As mutations in several components of

the proteasomal machinery results in neurological disorders,

such as Angelman syndrome, and X-linked mental retardation,

we predict that altered metaplasticity could be involved in the

pathogenesis of these disorders.

Although previous studies have shown that mGluR-LTD can

occur independently of protein synthesis under some circum-

stances, for example, in the fragile X syndrome disease mouse

model (Hou et al., 2006; Nosyreva and Huber, 2006), in 3- to

4-month-old rodents (Moult et al., 2008), or in early postnatal

life (Nosyreva and Huber, 2005), the mGluR-LTD that we studied

in young-adult rodents is dependent on protein translation. Our

conclusions that mGluR-LTD does not require an acute increase

in dendritic protein levels and that themagnitude of LTD does not

correlate with PRP abundance may seem at odds with current

hypotheses that elevated levels of PRPs contribute to enhanced

mGluR-LTD in FMRPKOmice. FMRP-null mice display a general

increase in basal protein levels, but an absence of mGluR-trig-

gered translation (Darnell and Klann, 2013). One theory is that

elevated basal PRP levels in the FMRP-null mice bypass the

need for mGluR-triggered translation and result in exaggerated

LTD, which may contribute to the neurological symptoms of

FXS (Bear et al., 2004). An important difference between our

study and previous results is that FMRP KO mice display gener-

ally increased basal protein levels while inhibition of the protea-

some will elevate the levels of proteins actively undergoing

degradation. A robust finding in FMRP KO mice is the insensi-

tivity of mGluR-LTD to translational inhibition (Nosyreva and

Huber, 2006). In this case, we draw a parallel to our clamped

mGluR-LTD paradigm. Several reports have suggested that

loss of FMRP results in disruption of the proteasomal machinery

(Tsai et al., 2012; Zhao et al., 2011). Perhaps decreased protea-

somal activity in the FMRP KO mouse allows for normal induc-

tion of mGluR-LTD in the presence of translational inhibitors,

similar to our demonstration of clamped mGluR-LTD. In addition

to current efforts to modulate translation and mGluR signaling,

pharmacological manipulation of the proteasomal machinery

might be an additional avenue for ameliorating the neurological

symptoms of fragile X syndrome.
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EXPERIMENTAL PROCEDURES

Electrophysiology

Rats and mice (P20–P25) were anesthetized and killed in compliance with the

guidelines of the Institutional Animal Care and Use Committee. Acute hippo-

campal slices were prepared (400 mm) in chilled sucrose solution and recov-

ered in 50/50 sucrose/ACSF at 30�C for 20 min before switching to 30�C
ACSF for an additional 1 hr recovery at room temperature. All recordings

were conducted at 30�C with 100 mM picrotoxin (Sigma). For whole-cell

recordings, a K-gluconate-based internal solution was used. See the Supple-

mental Experimental Procedures for extended recording conditions.

Western Blotting

Acute hippocampal slices were prepared as above and treated with drugs as

indicated. Following treatment, slices were transferred to ice-cold ACSF, and

S. Radiatumwas excised. Lysates were prepared in radioimmunoprecipitation

assay buffer (RIPA) buffer and loaded onto 10%Bis-tris acrylamide gels. For all

main figure blots two separate experiments (lanes) are shown for each exper-

imental condition. For Figures 2A and 4C, each dot represents a separate

experiment consisting of pooled lysate from eight microdissected slices

normalized to b actin (actb). The average for each condition was generated

from four separate experiments using slices from four rats. See the Supple-

mental Experimental Procedures for antibodies and synaptosomal

preparation.

Statistical Analysis

N values are displayed as (slices/cells; animals). Statistical analyses were

performed usingOriginPro 9.0 (OriginLab). ANOVAswere performed on exper-

iments with multiple groups followed by post hoc pairwise analyses with

Bonferroni correction. An asterisk denotes a p value of < 0.05, and n.s. indi-

cates a p value > 0.05. All values are expressed as mean ± SEM (percentage

of baseline).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2015.02.020.
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