15 research outputs found

    Exogenous IFN-alpha Administration Reduces Influenza A Virus Replication in the Lower Respiratory Tract of Rhesus Macaques

    Get PDF
    To determine the role of innate immune responses in controlling influenza A virus replication, rhesus macaques (RM) were administered pegylated IFN-alpha prior to virus challenge. Systemic and mucosal pegylated IFN-alpha administration induced expression of the interferon-stimulated genes (ISG) MxA and OAS in the airways. RM treated with IFN-alpha 24 hours prior to influenza virus challenge had significantly lower peak vRNA levels in the trachea compared to untreated animals. In addition to blunting viral replication, IFN-alpha treatment minimized the weight loss and spike in body temperature after influenza infection of RM. These results confirm the importance of IFN-alpha induced innate immune responses in the rapid control of influenza A virus replication in primates

    The importance of the exposome and allostatic load in the planetary health paradigm

    Get PDF
    In 1980, Jonas Salk (1914-1995) encouraged professionals in anthropology and related disciplines to consider the interconnections between "planetary health," sociocultural changes associated with technological advances, and the biology of human health. The concept of planetary health emphasizes that human health is intricately connected to the health of natural systems within the Earth's biosphere; experts in physiological anthropology have illuminated some of the mechanisms by which experiences in natural environments (or the built environment) can promote or detract from health. For example, shinrin-yoku and related research (which first emerged from Japan in the 1990s) helped set in motion international studies that have since examined physiological responses to time spent in natural and/or urban environments. However, in order to advance such findings into planetary health discourse, it will be necessary to further understand how these biological responses (inflammation and the collective of allostatic load) are connected to psychological constructs such as nature relatedness, and pro-social/environmental attitudes and behaviors. The exposome refers to total environmental exposures-detrimental and beneficial-that can help predict biological responses of the organism to environment over time. Advances in "omics" techniques-metagenomics, proteomics, metabolomics-and systems biology are allowing researchers to gain unprecedented insight into the physiological ramifications of human behavior. Objective markers of stress physiology and microbiome research may help illuminate the personal, public, and planetary health consequences of "extinction of experience." At the same time, planetary health as an emerging multidisciplinary concept will be strengthened by input from the perspectives of physiological anthropology.Peer reviewe

    Geometric effects of sustainable auxetic structures integrating the particle swarm optimization and finite element method

    Full text link
    The development of new materials based on industrial wastes has been the focus of much research for a sustainable world. The growing demand for tyres has been every year exacerbating environmental problems due to indiscriminate disposal in the nature, making a potentially harmful waste to public health. The incorporation of rubber particles from scrap tyres into polymeric composites has achieved high toughness and moderate mechanical properties. This work investigates the geometric effects (thickness, width and internal cell angle) of auxetic structures made of recycled rubber composites based on experimental and numerical data. The response surface models integrated with the swarm intelligence and finite element analysis were proposed in order to obtain a range of solutions that provides useful information to the user during the selection of geometric parameters for reentrant cells. The results revealed the cell thickness ranges from 39-40 mm and 5.98-6 mm, and the cell angle range from -0.01 to -0.06º maximize the ultimate strength. The same parameters were able to optimize the modulus of elasticity of rubber auxetic structures, excepting for the angle factor which must be set between -30º and 27.7º. The optimal Poisson's ratio was found when the cell angle ranged from -30º to -28.5º, cell width ranged from 5-5.6 mm and 2 mm in thickness

    Melatonin as a Biological Marker in Schizophrenia

    No full text
    corecore