142 research outputs found

    Neuroinflammation Associated With Inborn Errors of Immunity

    Get PDF
    The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.publishedVersio

    Genetics and pathophysiology of haemophagocytic lymphohistiocytosis

    Get PDF
    Haemophagocytic lymphohistiocytosis (HLH) represents a life-threatening hyperinflammatory syndrome. Familial studies have established autosomal and X-linked recessive causes of HLH, highlighting a pivotal role for lymphocyte cytotoxicity in the control of certain virus infections and immunoregulation. Recently, a more complex etiological framework has emerged, linking HLH predisposition to variants in genes required for metabolism or immunity to intracellular pathogens. We review genetic predisposition to HLH and discuss how molecular insights have provided fundamental knowledge of the immune system as well as detailed pathophysiological understanding of hyperinflammatory diseases, highlighting new treatment strategies.publishedVersio

    Synergistic Signals for Natural Cytotoxicity Are Required to Overcome Inhibition by c-Cbl Ubiquitin Ligase

    Get PDF
    SummaryNatural killer (NK) cell cytotoxicity toward target cells depends on synergistic coactivation by NK cell receptors such as NKG2D and 2B4. How synergy occurs is not known. Synergistic phosphorylation of phospholipase PLC-γ2, Ca2+ mobilization, and degranulation triggered by NKG2D and 2B4 coengagement were blocked by Vav1 siRNA knockdown, but enhanced by knockdown of c-Cbl. c-Cbl inhibited Vav1-dependent signals, given that c-Cbl knockdown did not rescue the Vav1 defect. Moreover, c-Cbl knockdown and Vav1 overexpression each circumvented the necessity for synergy because NKG2D or 2B4 alone became sufficient for activation. Thus, synergy requires not strict complementation but, rather, strong Vav1 signals to overcome inhibition by c-Cbl. Inhibition of NK cell cytotoxicity by CD94-NKG2A binding to HLA-E on target cells was dominant over synergistic activation, even after c-Cbl knockdown. Therefore, NK cell activation by synergizing receptors is regulated at the level of Vav1 by a hierarchy of inhibitory mechanisms

    Do reduced numbers of plasmacytoid dendritic cells contribute to the aggressive clinical course of COVID-19 in chronic lymphocytic leukaemia?

    Get PDF
    Infections with SARS-CoV-2 have been unduly severe in patients with haematological malignancies, in particular in those with chronic lymphocytic leukaemia (CLL). Based on a series of observations, we propose that an underlying mechanism for the aggressive clinical course of COVID-19 in CLL is a paucity of plasmacytoid dendritic cells (pDCs) in these patients. Indeed, pDCs express Toll-like receptor 7 (TLR7), which together with interferon-regulatory factor 7 (IRF7), enables pDCs to produce large amounts of type I interferons, essential for combating COVID-19. Treatment of CLL with Bruton's tyrosine kinase (BTK) inhibitors increased the number of pDCs, likely secondarily to the reduction in the tumour burden.publishedVersio

    Cytolytic granule polarization and degranulation controlled by different receptors in resting NK cells

    Get PDF
    The relative contribution to cytotoxicity of each of the multiple NK cell activation receptors has been difficult to assess. Using Drosophila insect cells, which express ligands of human NK cell receptors, we show that target cell lysis by resting NK cells is controlled by different receptor signals for cytolytic granule polarization and degranulation. Intercellular adhesion molecule (ICAM)-1 on insect cells was sufficient to induce polarization of granules, but not degranulation, in resting NK cells. Conversely, engagement of the Fc receptor CD16 by rabbit IgG on insect cells induced degranulation without specific polarization. Lysis by resting NK cells occurred when polarization and degranulation were induced by the combined presence of ICAM-1 and IgG on insect cells. Engagement of receptor 2B4 by CD48 on insect cells induced weak polarization and no degranulation. However, coengagement of 2B4 and CD16 by their respective ligands resulted in granule polarization and cytotoxicity in the absence of leukocyte functional antigen-1–mediated adhesion to target cells. These data show that cytotoxicity by resting NK cells is controlled tightly by separate or cooperative signals from different receptors for granule polarization and degranulation

    Development of classical Hodgkin’s lymphoma in an adult with biallelic STXBP2 mutations

    Get PDF
    Experimental model systems have delineated an important role for cytotoxic lymphocytes in the immunosurveillance of cancer. In humans, perforin-deficiency has been associated with occurrence of hematologic malignancies. Here, we describe an Epstein-Barr virus-positive classical Hodgkin's lymphoma in a patient harboring biallelic mutations in STXBP2, a gene required for exocytosis of perforin-containing lytic granules and associated with familial hemophagocytic lymphohistocytosis. Cytotoxic T lymphocytes were found infiltrating the tumor, and a high frequency of Epstein-Barr virus-specific cytotoxic T lymphocytes were detected in peripheral blood. However, lytic granule exocytosis and cytotoxicity by cytotoxic T lymphocytes, as well as natural killer cells, were severely impaired in the patient. Thus, the data suggest a link between defective lymphocyte exocytosis and development of lymphoma in STXBP2-deficient patients. Therefore, with regards to treatment of familial hemophagocytic lymphohistocytosis patients with mutations in genes required for lymphocyte exocytosis, it is important to consider both the risks of hemophagocytic lymphohistocytosis and malignancy.Swedish Research CouncilSwedish Cancer FoundationSwedish Children’s Cancer FoundationHistiocytosis AssociationClas Groschinsky’s Memorial FundJeanssons FoundationÅke Olsson Foundation for Hematological ResearchÅke Wiberg FoundationKarolinska Institute Research FoundationStockholm County Council (ALF project)Publishe

    Adult-Onset Ataxia with Neuropathy and White Matter Abnormalities Due to a Novel SAMD9L Variant

    Get PDF
    Variants in tumor suppressor genes and in genes encoding DNA repairing proteins are associated with syndromes conferring neurologic features and increased risk for malignancy. The best example for these conditions is ataxia-telangiectasia (AT). A more rare and recent disease is an ataxia-pancytopenia syndrome (ATXPC) associated with heterozygous gain-of-function variants in the tumor suppressor gene SAMD9L (MIM 159550). Here, we describe a patient with a complex cerebellar syndrome associated with a novel SAMD9L pathogenic variant.publishedVersio

    Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection from malaria

    Get PDF
    How antibodies naturally acquired during Plasmodium falciparum infection provide clinical immunity to blood-stage malaria is unclear. We studied the function of natural killer (NK) cells in people living in a malaria-endemic region of Mali. Multi-parameter flow cytometry revealed a high proportion of adaptive NK cells, which are defined by the loss of transcription factor PLZF and Fc receptor γ-chain. Adaptive NK cells dominated antibody-dependent cellular cytotoxicity responses, and their frequency within total NK cells correlated with lower parasitemia and resistance to malaria. P. falciparum–infected RBCs induced NK cell degranulation after addition of plasma from malaria-resistant individuals. Malaria-susceptible subjects with the largest increase in PLZF-negative NK cells during the transmission season had improved odds of resistance during the subsequent season. Thus, antibody-dependent lysis of P. falciparum–infected RBCs by NK cells may be a mechanism of acquired immunity to malaria. Consideration of antibody-dependent NK cell responses to P. falciparum antigens is therefore warranted in the design of malaria vaccines

    CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin

    Get PDF
    Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8(+) Trm cells on a compartmental and functional basis. In human skin epithelia, CD8(+)CD49a(+) Trm cells produced interferon-γ, whereas CD8(+)CD49a(−) Trm cells produced interleukin-17 (IL-17). In addition, CD8(+)CD49a(+) Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8(+)CD49a(+) Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8(+)CD49a(–) Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8(+) Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases
    • …
    corecore