93 research outputs found

    Induced pluripotency and reprogramming by defined factors

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, June 2011."June 2011." Cataloged from PDF version of thesis.Includes bibliographical references.The process by which the totipotent zygote undergoes development into an adult organism using a single genome is the foundation for epigenetics and cellular differentiation. Somatic cell nuclear transfer experiments (SCNT) provided unequivocal proof of nuclear equivalency between adult somatic cells. However the molecular mechanisms of somatic cell reprogramming have remained largely a mystery. Recent advancements in epigenetic reprogramming by defined factors provide new opportunities to explore factors that regulate induction of pluripotency in somatic cells. Nuclear reprogramming by SCNT occurs in an 'indirect' manner by unidentified components within oocyte cytoplasm and requires the destruction of embryos. The introduction of induced pluripotent stem cells (iPS cells) and 'direct' reprogramming methods created a tractable system to both study of the process in vitro and potentially derive personalized pluripotent stem cells free of the practical and ethical concerns surrounding embryonic stem (ES) cells and SCNT. Herein we study mouse somatic cell reprogramming by defined factors and develop novel tools to compare the induced pluripotent state to the gold standard of pluripotency, ES cells. First, we designed reprogramming vectors that minimize the number of viruses required to generate iPS cells, yielding pluripotent cells with minimal genomic alterations from reprogramming factors. This allowed the creation of transgenic "reprogrammable mouse" strains after gene targeting in ES cells, providing a renewable source of somatic cells that can be induced to pluripotency by addition of a drug. In addition we can easily introduce or mate these strains to study unique genetic variants during reprogramming. Third, we study factors that influence the induced pluripotent state, specifically how to generate pluripotent cells with all properties of embryonic stem cells including derivation of "all iPS cell mice" by tetraploid complementation assays. In contrast to previous reports, we find the majority (- 80%) of iPS cell lines derived from adult somatic cells of varying organs contain the developmental potential of ES cells. This outcome correlated with high expression of Oct4 and Klf4 and low expression of Sox2 and c-Myc during reprogramming. In addition we report that adult mice derived from iPS cells are healthy and do not develop tumors. Together these results suggest in vitro reprogramming to pluripotency by defined factors holds great promise for regenerative medicine.by Bryce W. Carey.Ph.D

    Reprogramming Factor Stoichiometry Influences the Epigenetic State and Biological Properties of Induced Pluripotent Stem Cells

    Get PDF
    We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting pluripotency of iPS cells. High expression of Oct4 and Klf4 combined with lower expression of c-Myc and Sox2 produced iPS cells that efficiently generated “all-iPSC mice” by tetraploid (4n) complementation, maintained normal imprinting at the Dlk1-Dio3 locus, and did not create mice with tumors. Loss of imprinting (LOI) at the Dlk1-Dio3 locus did not strictly correlate with reduced pluripotency though the efficiency of generating “all-iPSC mice” was diminished. Our data indicate that stoichiometry of reprogramming factors can influence epigenetic and biological properties of iPS cells. This concept complicates efforts to define a “generic” epigenetic state of iPSCs and ESCs and should be considered when comparing different iPS and ES cell lines.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Institutes of Health (U.S.) (Grant 5-RO1-HDO45022)National Institutes of Health (U.S.) (Grant 5-R37-CA084198)National Institutes of Health (U.S.). (Grant 5-RO1-CA087869

    Metastable Pluripotent States in NOD Mouse Derived ES Cells

    Get PDF
    Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and display a restricted developmental potential. Here we characterize pluripotent states in the non-obese diabetic (NOD) mouse strain, which prior to this study was considered “non-permissive” for ES cell derivation. We find that NOD stem cells can be stabilized by providing constitutive expression of Klf4 or c-Myc or small molecules that can replace these factors during in vitro reprogramming. The NOD ES and iPS cells appear “metastable”, as they acquire an alternative EpiSC-like identity after removal of the exogenous factors, while their reintroduction converts the cells back to ICM-like pluripotency. Our findings suggest that stem cells from different genetic backgrounds can assume distinct states of pluripotency in vitro, the stability of which is regulated by endogenous genetic determinants and can be modified by exogenous factors.National Institutes of Health (U.S.) (Grant RO1-HDO45022)National Institutes of Health (U.S.) (Grant R37-CA084198)National Institutes of Health (U.S.) (Grant RO1-CA087869

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    lincRNAs act in the circuitry controlling pluripotency and differentiation

    Get PDF
    Although thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in mammals, few have been functionally characterized, leading to debate about their biological role. To address this, we performed loss-of-function studies on most lincRNAs expressed in mouse embryonic stem (ES) cells and characterized the effects on gene expression. Here we show that knockdown of lincRNAs has major consequences on gene expression patterns, comparable to knockdown of well-known ES cell regulators. Notably, lincRNAs primarily affect gene expression in trans. Knockdown of dozens of lincRNAs causes either exit from the pluripotent state or upregulation of lineage commitment programs. We integrate lincRNAs into the molecular circuitry of ES cells and show that lincRNA genes are regulated by key transcription factors and that lincRNA transcripts bind to multiple chromatin regulatory proteins to affect shared gene expression programs. Together, the results demonstrate that lincRNAs have key roles in the circuitry controlling ES cell state.Broad InstituteHarvard UniversityNational Human Genome Research Institute (U.S.)Merkin Family Foundation for Stem Cell Researc
    corecore