43 research outputs found

    Highly efficient 5\u27 capping of mitochondrial RNA with NAD+ and NADH by yeast and human mitochondrial RNA polymerase

    Get PDF
    Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly. © 2018, Bird et al

    Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis

    Get PDF
    Mycobacterium tuberculosis infection continues to cause substantial human suffering. New chemotherapeutic strategies, which require insight into the pathways essential for M. tuberculosis pathogenesis, are imperative. We previously reported that depletion of the CarD protein in mycobacteria compromises viability, resistance to oxidative stress and fluoroquinolones, and pathogenesis. CarD associates with the RNA polymerase (RNAP), but it has been unknown which of the diverse functions of CarD are mediated through the RNAP; this question must be answered to understand the CarD mechanism of action. Herein, we describe the interaction between the M. tuberculosis CarD and the RNAP β subunit and identify point mutations that weaken this interaction. The characterization of mycobacterial strains with attenuated CarD/RNAP β interactions demonstrates that the CarD/RNAP β association is required for viability and resistance to oxidative stress but not for fluoroquinolone resistance. Weakening the CarD/RNAP β interaction also increases the sensitivity of mycobacteria to rifampin and streptomycin. Surprisingly, depletion of the CarD protein did not affect sensitivity to rifampin. These findings define the CarD/RNAP interaction as a new target for chemotherapeutic intervention that could also improve the efficacy of rifampin treatment of tuberculosis. In addition, our data demonstrate that weakening the CarD/RNAP β interaction does not completely phenocopy the depletion of CarD and support the existence of functions for CarD independent of direct RNAP binding

    Effects of increasing the affinity of CarD for RNA polymerase on Mycobacterium tuberculosis growth, rRNA transcription, and virulence

    Get PDF
    CarD is an essential RNA polymerase (RNAP) interacting protein in Mycobacterium tuberculosis that stimulates formation of RNAP-promoter open complexes. CarD plays a complex role in M. tuberculosis growth and virulence that is not fully understood. Therefore, to gain further insight into the role of CarD in M. tuberculosis growth and virulence, we determined the effect of increasing the affinity of CarD for RNAP. Using site-directed mutagenesis guided by crystal structures of CarD bound to RNAP, we identified amino acid substitutions that increase the affinity of CarD for RNAP. Using these substitutions, we show that increasing the affinity of CarD for RNAP increases the stability of the CarD protein in M. tuberculosis. In addition, we show that increasing the affinity of CarD for RNAP increases the growth rate in M. tuberculosis without affecting 16S rRNA levels. We further show that increasing the affinity of CarD for RNAP reduces M. tuberculosis virulence in a mouse model of infection despite the improved growth rate in vitro. Our findings suggest that the CarD-RNAP interaction protects CarD from proteolytic degradation in M. tuberculosis, establish that growth rate and rRNA levels can be uncoupled in M. tuberculosis and demonstrate that the strength of the CarD-RNAP interaction has been finely tuned to optimize virulence. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a major global health problem. In order to develop new strategies to battle this pathogen, we must gain a better understanding of the molecular processes involved in its survival and pathogenesis. We have previously identified CarD as an essential transcriptional regulator in mycobacteria. In this study, we detail the effects of increasing the affinity of CarD for RNAP on transcriptional regulation, CarD protein stability, and virulence. These studies expand our understanding of the global transcription regulator CarD, provide insight into how CarD activity is regulated, and broaden our understanding of prokaryotic transcription

    Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis

    Get PDF
    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ66-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability

    Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction

    Get PDF
    The transcription-repair coupling factor (TRCF, the product of the mfd gene) is a widely conserved bacterial protein that mediates transcription-coupled DNA repair. TRCF uses its ATP-dependent DNA translocase activity to remove transcription complexes stalled at sites of DNA damage, and stimulates repair by recruiting components of the nucleotide excision repair pathway to the site. A protein/protein interaction between TRCF and the β-subunit of RNA polymerase (RNAP) is essential for TRCF function. CarD (also called CdnL), an essential regulator of rRNA transcription in Mycobacterium tuberculosis, shares a homologous RNAP interacting domain with TRCF and also interacts with the RNAP β-subunit. We determined the 2.9-Å resolution X-ray crystal structure of the RNAP interacting domain of TRCF complexed with the RNAP-β1 domain, which harbors the TRCF interaction determinants. The structure reveals details of the TRCF/RNAP protein/protein interface, providing a basis for the design and interpretation of experiments probing TRCF, and by homology CarD, function and interactions with the RNAP

    Promoter-sequence determinants and structural basis of primer-dependent transcription initiation in Escherichia coli

    Get PDF
    Chemical modifications of RNA 5'-ends enable "epitranscriptomic" regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5'-end. In Escherichia coli cells, RNAs with a 5'-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, "primer-dependent initiation." Here, we use massively systematic transcript end readout (MASTER) to detect and quantify RNA 5'-ends generated by primer-dependent initiation for ∼410 (∼1,000,000) promoter sequences in E. coli The results show primer-dependent initiation in E. coli involves any of the 16 possible dinucleotide primers and depends on promoter sequences in, upstream, and downstream of the primer binding site. The results yield a consensus sequence for primer-dependent initiation, YTSS-2NTSS-1NTSSWTSS+1, where TSS is the transcription start site, NTSS-1NTSS is the primer binding site, Y is pyrimidine, and W is A or T. Biochemical and structure-determination studies show that the base pair (nontemplate-strand base:template-strand base) immediately upstream of the primer binding site (Y:RTSS-2, where R is purine) exerts its effect through the base on the DNA template strand (RTSS-2) through interchain base stacking with the RNA primer. Results from analysis of a large set of natural, chromosomally encoded E coli promoters support the conclusions from MASTER. Our findings provide a mechanistic and structural description of how TSS-region sequence hard-codes not only the TSS position but also the potential for epitranscriptomic regulation through primer-dependent transcription initiation

    Structural and mechanistic basis of σ-dependent transcriptional pausing

    Get PDF
    In σ-dependent transcriptional pausing, the transcription initiation factor σ, translocating with RNA polymerase (RNAP), makes sequence-specific protein-DNA interactions with a promoter-like sequence element in the transcribed region, inducing pausing. It has been proposed that, in σ-dependent pausing, the RNAP active center can access off-pathway “backtracked” states that are substrates for the transcript-cleavage factors of the Gre family, and on-pathway “scrunched” states that mediate pause escape. Here, using site-specific protein-DNA photocrosslinking to define positions of the RNAP trailing and leading edges and of σ relative to DNA at the λPR’ promoter, we show directly that σ-dependent pausing in the absence of GreB in vitro predominantly involves a state backtracked by 2-4 bp, and that σ-dependent pausing in the presence of GreB in vitro and in vivo predominantly involves a state scrunched by 2-3 bp. Analogous experiments with a library of 47 (∼16,000) transcribed-region sequences show that the state scrunched by 2-3 bp--and only that state--is associated with the consensus sequence, T-3N-2Y-1G+1, (where -1 corresponds to the position of the RNA 3’ end), which is identical to the consensus for pausing in initial transcription, and which is related to the consensus for pausing in transcription elongation. Experiments with heteroduplex templates show that sequence information at position T-3 resides in the DNA nontemplate strand. A cryo-EM structure of a complex engaged in σ-dependent pausing reveals positions of DNA scrunching on the DNA nontemplate and template strands and suggests that position T-3 of the consensus sequence exerts its effects by facilitating scrunching
    corecore